留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于磁隔离驱动的亚微秒高压脉冲电源

饶俊峰 宋子鸣 王永刚 姜松 李孜

饶俊峰, 宋子鸣, 王永刚, 等. 基于磁隔离驱动的亚微秒高压脉冲电源[J]. 强激光与粒子束, 2021, 33: 115002. doi: 10.11884/HPLPB202133.210332
引用本文: 饶俊峰, 宋子鸣, 王永刚, 等. 基于磁隔离驱动的亚微秒高压脉冲电源[J]. 强激光与粒子束, 2021, 33: 115002. doi: 10.11884/HPLPB202133.210332
Rao Junfeng, Song Ziming, Wang Yonggang, et al. Sub-microsecond high voltage pulse power supply based on magnetic isolated driving[J]. High Power Laser and Particle Beams, 2021, 33: 115002. doi: 10.11884/HPLPB202133.210332
Citation: Rao Junfeng, Song Ziming, Wang Yonggang, et al. Sub-microsecond high voltage pulse power supply based on magnetic isolated driving[J]. High Power Laser and Particle Beams, 2021, 33: 115002. doi: 10.11884/HPLPB202133.210332

基于磁隔离驱动的亚微秒高压脉冲电源

doi: 10.11884/HPLPB202133.210332
基金项目: 国家重点研发计划项目(2019YFC0119100);上海市青年科技英才扬帆计划项目(20YF1431100);上海理工大学-上海交通大学医学院医工交叉重点支持项目(2021005)
详细信息
    作者简介:

    饶俊峰,raojunfeng1985@163.com

  • 中图分类号: TM832

Sub-microsecond high voltage pulse power supply based on magnetic isolated driving

  • 摘要: 为满足不可逆电穿孔对高压纳秒脉冲电源的需求,并且突破电源模块耐压的限制,提出了一款以正极性Marx为主电路、具有ns级前沿的高重复频率的亚微秒高压脉冲电源。该脉冲电源使用光纤传输信号,经过驱动芯片放大信号后,利用磁芯变压器传递驱动信号给MOSFET。磁芯变压器给电路提供了磁隔离,使驱动电路不会受高压输出的影响,提高了电路的耐压水平。驱动电路设计简单,所需元器件较少,可提供负压偏置,使开关管可靠关断,提高电路的抗电磁干扰能力,保障电路稳定运行。此电源由16级电路构成,实验表明:在10 kΩ纯阻性负载上,当输入电压为630 V时,即可得到10 kV的高压输出。其最小脉宽为300 ns,频率1 Hz~10 kHz可调。该脉冲电源结构紧凑,能够做到输出电压、脉宽、频率可调。研究了磁芯材料和匝数对驱动脉宽的影响。结果表明:匝比的增加会影响信号脉宽,在一定的条件下,单匝电感量的差异和磁芯材料的不同对信号脉宽的影响较小。
  • 图  1  Marx主电路图

    Figure  1.  Marx type main circuit

    图  2  驱动芯片后磁隔离同步驱动电路图

    Figure  2.  Proposed synchronous drive circuit with magnetic isolation after the drivers

    图  3  驱动负压产生示意图

    Figure  3.  Schematic of negative voltage of drive

    图  4  同一个磁芯不同匝比的驱动波形图

    Figure  4.  Driving waveforms of the same magnetic core with different turn ratios

    图  5  同款磁芯材料不同单匝电感量的驱动波形

    Figure  5.  Driving waveform of different single turn inductance of the same type of core material

    图  6  不同款磁芯在相同匝比相同单匝电感量时的驱动波形

    Figure  6.  Driving waveforms of different magnetic cores at the same turn ratio and the same single-turn inductance

    图  7  300 ns脉宽的放电管驱动波形

    Figure  7.  Discharge switch drive waveform with pulse width of 300 ns

    图  8  亚微秒Marx发生器实物图

    Figure  8.  Photo of submicrosecond Marx generator

    图  9  脉宽500 ns下输出不同电压波形图

    Figure  9.  Different output voltage waveforms at pulse width of 500 ns

    图  10  不同脉宽输出10 kV电压波形图

    Figure  10.  Waveforms of 10 kV output voltage with different pulse widths

    图  11  输出电压10 kV重复频率10 kHz的脉冲电压波形

    Figure  11.  Voltage waveforms of 10-kV pulses at the frequency of 10 kHz

    图  12  Marx发生器介质阻挡放电放电实物照片

    Figure  12.  Photo of DBD excited by the High voltage pulses from the Marx generator

    图  13  Marx发生器介质阻挡放电电压电流波形

    Figure  13.  Output voltage and current waveform of the Marx generator to DBD

    表  1  三款磁芯型号

    Table  1.   Three core models

    No. of corematerial of coresize of core
    IFe-based amorphous alloy16 mm×
    26 mm×5 mm
    IIFe-based amorphous alloy12 mm×
    20 mm×8 mm
    IIIferrite12 mm×
    20 mm×8 mm
    下载: 导出CSV

    表  2  实验中磁芯参数表

    Table  2.   Table of magnetic core parameters in the experiment

    No. of
    experiment
    type of
    core
    single turn inductance
    of core/μH
    turns
    ratio
    1 I 7.77 7∶7
    2 I 7.77 5∶5
    3 I 7.77 3∶3
    4 I 7.77 1∶1
    5 I 6.22 3∶3
    6 I 9.10 3∶3
    7 II 7.77 7∶7
    8 II 7.77 5∶5
    9 II 7.77 3∶3
    10 II 7.77 1∶1
    11 III 7.37 7∶7
    12 III 7.37 5∶5
    13 III 7.37 3∶3
    14 III 7.37 1∶1
    下载: 导出CSV
  • [1] 卢新培, 严萍, 任春生, 等. 大气压脉冲放电等离子体的研究现状与展望[J]. 中国科学:物理学、力学、天文学, 2011, 41(7):801-815. (Lu Xinpei, Yan Ping, Ren Chunsheng, et al. Review on atmospheric pressure pulsed DC discharge[J]. SCIENTIA SINICA Phys, Mech & Astron, 2011, 41(7): 801-815
    [2] Miklavčič D, Sersa G, Brecelj E, et al. Electrochemotherapy: technological advancements for efficient electroporation-based treatment of internal tumors[J]. Medical & Biological Engineering & Computing, 2012, 50(12): 1213-1225.
    [3] Magori Y, Ohta S, Kagetama T, et al. In vivo experiment of applying nanosecond pulsed electric fields on solid tumor[C]//IEEE Pulsed Power Conference. 2011: 1253-1257.
    [4] 姚陈果, 宁郡怡, 刘红梅, 等. 微/纳秒脉冲电场靶向不同尺寸肿瘤细胞内外膜电穿孔效应研究[J]. 电工技术学报, 2020, 35(1):115-124. (Yao Chenguo, Ning Junyi, Liu Hongmei, et al. Study of electroporation effect of different size tumor cells targeted by micro-nanosecond pulsed electric field[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 115-124
    [5] Beebe S J, Fox P M, Rec L J, et al. Nanosecond, high intensity pulsed electric fields induce apoptosis in human cells[J]. Faseb Journal, 2003, 17(9): 1493-1495.
    [6] Schoenbach K H, Katsuki S, Stark R H, et al. Bioelectrics—New applications for pulsed power technology[J]. IEEE Transactions on Plasma Science, 2002, 30(1): 293-300. doi: 10.1109/TPS.2002.1003873
    [7] Schoenbach K H, Joshi R P. Ultrashort electrical pulses open a new gateway into biological cells[J]. Proceedings of the IEEE, 2004, 92(7): 1122-1137. doi: 10.1109/JPROC.2004.829009
    [8] Schoenbach K H, Nuccitelli R, Beebe S J. ZAP: Extreme voltage could be a surprisingly delicate tool in the fight against cancer[J]. IEEE Spectrum, 2006, 43(8): 20-26.
    [9] 唐靖超, 殷海荣, 马佳路, 等. 纳秒电脉冲作用下KcsA-膜蛋白体系电穿孔的分子动力学模拟[J]. 真空电子技术, 2019, 4(1):14-20. (Tang Jingchao, Yin Hairong, Ma Jialu, et al. Electroporation of KcsA membrane protein system under nanosecond pulsed electric field: A molecular dynamics simulation[J]. Vacuum Electronics, 2019, 4(1): 14-20
    [10] 赵君科, 夏连胜, 任先文, 等. 陡前沿纳秒脉冲电源的研制[J]. 高电压技术, 1999(2):44-46. (Zhao Junke, Xia Liansheng, Ren Xianwen, et al. Research on pulsed power source with nanoseconds risetime[J]. High Voltage Engineering, 1999(2): 44-46 doi: 10.3969/j.issn.1003-6520.1999.02.016
    [11] 周启明, 孙庚晨, 罗学金, 等. 100kV高压ns陡脉冲源的研制[J]. 高电压技术, 2002, 28(6):37-39. (Zhou Qiming, Sun Gengchen, Luo Xuejin, et al. Development of a nanosecond high voltage pulse power of 100kV and 50Ω loading[J]. High Voltage Engineering, 2002, 28(6): 37-39 doi: 10.3969/j.issn.1003-6520.2002.06.017
    [12] 李玺钦, 丁明军, 吴红光, 等. 低抖动快前沿重复频率高压脉冲触发源研制[J]. 强激光与粒子束, 2014, 26:095001. (Li Xiqin, Ding Mingjun, Wu Hongguang, et al. Development of low jitter fast fall time and repetitive high voltage pulsed trigger[J]. High Power Laser and Particle Beams, 2014, 26: 095001 doi: 10.11884/HPLPB201426.095001
    [13] Liu Y, Fan R, Zhang X, et al. Bipolar high voltage pulse generator without H-bridge based on cascade of positive and negative Marx generators[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(2): 476-483. doi: 10.1109/TDEI.2018.007861
    [14] 嵇保健, 王若冰, 洪峰, 等. 基于Marx电路的纳秒级高压脉冲电源设计[J]. 高电压技术, 2016, 42(12):3758-3762. (Ji Baojian, Wang Ruobing, Hong Feng, et al. Design of nanosecond high-voltage pulsed power source based on Marx generator[J]. High Voltage Engineering, 2016, 42(12): 3758-3762
    [15] Richard L C, Palo A. High voltage pulsed power supply using solid state switches with voltage cell isolation: United States, US7550876B2[P]. 2009-06-30.
    [16] Wang Jianjing, Chung S H. Impact of parasitic elements on the spurious triggering pulse in synchronous buck converter[J]. IEEE Transactions on Power Electronics, 2014, 29(12): 6672-6685.
    [17] 纪圣儒, 朱志明, 周雪珍, 等. MOSFET隔离型高速驱动电路[J]. 电焊机, 2007, 37(5):6-9,77. (Ji Shengru, Zhu Zhiming, Zhou Xuezhen, et al. Electrical-isolated high-speed MOSFET driver circuit[J]. Electric Welding Machine, 2007, 37(5): 6-9,77 doi: 10.3969/j.issn.1001-2303.2007.05.002
    [18] 徐建清, 高勇, 杨媛, 等. SiC MOSFET驱动电路设计及特性分析[J]. 半导体技术, 2020, 45(5):352-358,408. (Xu Jianqing, Gao Yong, Yang Yuan, et al. Driving circuit design and performance analysis for SiC MOSFET[J]. Semiconductor Devices, 2020, 45(5): 352-358,408
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  829
  • HTML全文浏览量:  353
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-30
  • 修回日期:  2021-10-29
  • 录用日期:  2021-11-03
  • 网络出版日期:  2021-11-08
  • 刊出日期:  2021-11-15

目录

    /

    返回文章
    返回