留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采用飞秒光纤激光同步泵浦的自启动锁模钛宝石激光研究

宋海声 刘宇平 滕浩 于洋 冯小天 邵晓东 吕仁冲 韩海年 朱江峰 魏志义

宋海声, 刘宇平, 滕浩, 等. 采用飞秒光纤激光同步泵浦的自启动锁模钛宝石激光研究[J]. 强激光与粒子束, 2021, 33: 111008. doi: 10.11884/HPLPB202133.210346
引用本文: 宋海声, 刘宇平, 滕浩, 等. 采用飞秒光纤激光同步泵浦的自启动锁模钛宝石激光研究[J]. 强激光与粒子束, 2021, 33: 111008. doi: 10.11884/HPLPB202133.210346
Song Haisheng, Liu Yuping, Teng Hao, et al. Self-starting mode-locking Ti: sapphire oscillator synchronously pumped by femtosecond fiber laser[J]. High Power Laser and Particle Beams, 2021, 33: 111008. doi: 10.11884/HPLPB202133.210346
Citation: Song Haisheng, Liu Yuping, Teng Hao, et al. Self-starting mode-locking Ti: sapphire oscillator synchronously pumped by femtosecond fiber laser[J]. High Power Laser and Particle Beams, 2021, 33: 111008. doi: 10.11884/HPLPB202133.210346

采用飞秒光纤激光同步泵浦的自启动锁模钛宝石激光研究

doi: 10.11884/HPLPB202133.210346
基金项目: 国家自然科学基金项目(12034020);国家重点研发计划项目(2018YFB1107201);综合极端条件实验装置项目
详细信息
    作者简介:

    宋海声,653526491@qq.com

    通讯作者:

    滕 浩,hteng@iphy.ac.cn

  • 中图分类号: TN248

Self-starting mode-locking Ti: sapphire oscillator synchronously pumped by femtosecond fiber laser

  • 摘要: 针对常规连续激光泵浦钛宝石激光振荡器不能自启动锁模的缺点,采用倍频飞秒光纤激光同步泵浦,通过调节振荡器腔长与泵浦腔长匹配,实现了飞秒钛宝石激光的自启动锁模。实验中采用3.4 W的倍频掺镱光纤激光同步泵浦钛宝石激光振荡器,获得了平均功率大于130 mW、重复频率75 MHz、光谱宽度大于47 nm、脉冲宽度17 fs的锁模脉冲输出,不仅能够稳定可靠地实现自启动锁模,解决了常规钛宝石激光振荡器锁模启动的困难,而且还具有同步输出1040,800,520 nm三束飞秒激光的特点,为进一步开展飞秒激光相干合成以及光参量放大等研究提供了优势基础。
  • 图  1  倍频飞秒光纤激光同步泵浦钛宝石振荡器系统光路图

    Figure  1.  Optical circuit diagram of femtosecond fiber laser synchronous pumping Ti:sapphire oscillator system

    图  2  钛宝石振荡器的锁模脉冲序列

    Figure  2.  Mode-locked pulse train for Ti:sapphire oscillator

    图  3  钛宝石振荡器频谱序列

    Figure  3.  Ti sapphire oscillator spectrum sequences

    图  4  钛宝石振荡器与飞秒泵浦源的锁模脉冲序列

    Figure  4.  Mode-locked pulse train for a Ti:sapphire oscillator and femtosecond pump source

    图  5  钛宝石激光脉冲自相关曲线

    Figure  5.  Autocorrelation curve of Ti:sapphire laser pulse

    图  6  与激光脉冲自相关曲线相对应的光谱曲线

    Figure  6.  Spectral curve corresponding to laser pulse autocorrelation curve

  • [1] Rapoport W R, Khattak C P. Titanium sapphire laser characteristics[J]. Applied Optics, 1988, 27(13): 2677-2684. doi: 10.1364/AO.27.002677
    [2] Spence D E, Kean P N, Sibbett W. 60-fsec pulse generation from a self-mode-locked Ti: Sapphire laser[J]. Optics Letters, 1991, 16(1): 42-44. doi: 10.1364/OL.16.000042
    [3] Salin F, Squier J, Piché M. Mode locking of Ti: sapphire lasers and self-focusing: a Gaussian approximation[J]. Optics Letters, 1991, 16(21): 1674-1676. doi: 10.1364/OL.16.001674
    [4] 何会军. 超短脉冲激光放大及中红外飞秒激光产生的研究[D]. 北京: 中国科学院大学(中国科学院物理研究所), 2018

    He Huijun. Amplification of ultrashort pulse laser and generation of mid-infrared femtosecond pulses[D]. Beijing: Institute of Physics, Chinese Academy of Sciences, 2018
    [5] Sutter D H, Steinmeyer G, Gallmann L, et al. Semiconductor saturable-absorber mirror–assisted Kerr-lens mode-locked Ti: sapphire laser producing pulses in the two-cycle regime[J]. Optics Letters, 1999, 24(9): 631-633. doi: 10.1364/OL.24.000631
    [6] Asaki M T, Huang C P, Garvey D, et al. Generation of 11-fs pulses from a self-mode-locked Ti: sapphire laser[J]. Optics Letters, 1993, 18(12): 977-979. doi: 10.1364/OL.18.000977
    [7] Szipöcs R, Ferencz K, Spielmann C, et al. Chirped multilayer coatings for broadband dispersion control in femtosecond lasers[J]. Optics Letters, 1994, 19(3): 201-203. doi: 10.1364/OL.19.000201
    [8] Chen Y, Kärtner F X, Morgner U, et al. Dispersion-managed mode locking[J]. Journal of the Optical Society of America B, 1999, 16(11): 1999-2004. doi: 10.1364/JOSAB.16.001999
    [9] Liu Han, Wang Geyang, Jiang Jianwang, et al. Sub-10-fs pulse generation from a blue laser-diode-pumped Ti: sapphire oscillator[J]. Chinese Optics Letters, 2020, 18: 071402. doi: 10.3788/COL202018.071402
    [10] Ell R, Angelow G, Seitz W, et al. Quasi-synchronous pumping of modelocked few-cycle titanium sapphire lasers[J]. Optics Express, 2005, 13(23): 9292-9298. doi: 10.1364/OPEX.13.009292
    [11] Didenko N V, Konyashchenko A V, Konyashchenko D A, et al. Ti: sapphire laser synchronised with femtosecond Yb pump laser via nonlinear pulse coupling in Ti: sapphire active medium[J]. Quantum Electronics, 2017, 47(1): 7-13. doi: 10.1070/QEL16246
    [12] 孟祥昊. 全固态锁模激光及其同步泵浦的飞秒脉冲产生与应用研究[D]. 北京: 中国科学院大学(中国科学院物理研究所), 2018

    Meng Xianghao. Generation and application of tunable femtoseond laser pulse synchronously pumped by all solid state mode-locking laser[D]. Beijing: Institute of Physics, Chinese Academy of Sciences, 2018
    [13] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 56(3): 219-221. doi: 10.1016/0030-4018(85)90120-8
    [14] Pask H M, Carman R J, Hanna D C, et al. Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1995, 1(1): 2-13. doi: 10.1109/2944.468377
    [15] 于洋. 掺镱光纤激光放大器及波长扩展技术的研究[D]. 西安: 西安电子科技大学, 2020

    Yu Yang. Ytterbium-doped fiber laser amplification and wavelength extension[D]. Xi’an: Xidian University, 2020
  • 加载中
图(6)
计量
  • 文章访问数:  1029
  • HTML全文浏览量:  395
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-10
  • 修回日期:  2021-11-04
  • 网络出版日期:  2021-11-13
  • 刊出日期:  2021-11-15

目录

    /

    返回文章
    返回