留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

开放空间重复频率微波脉冲击穿概率理论与实验研究

杨浩 闫二艳 聂勇 余川 鲍向阳 郑强林 胡海鹰

杨浩, 闫二艳, 聂勇, 等. 开放空间重复频率微波脉冲击穿概率理论与实验研究[J]. 强激光与粒子束, 2021, 33: 123013. doi: 10.11884/HPLPB202133.210365
引用本文: 杨浩, 闫二艳, 聂勇, 等. 开放空间重复频率微波脉冲击穿概率理论与实验研究[J]. 强激光与粒子束, 2021, 33: 123013. doi: 10.11884/HPLPB202133.210365
Yang Hao, Yan Eryan, Nie Yong, et al. Statistical characteristics of S-band microwave pulse breakdown time in free space[J]. High Power Laser and Particle Beams, 2021, 33: 123013. doi: 10.11884/HPLPB202133.210365
Citation: Yang Hao, Yan Eryan, Nie Yong, et al. Statistical characteristics of S-band microwave pulse breakdown time in free space[J]. High Power Laser and Particle Beams, 2021, 33: 123013. doi: 10.11884/HPLPB202133.210365

开放空间重复频率微波脉冲击穿概率理论与实验研究

doi: 10.11884/HPLPB202133.210365
基金项目: 装备预研重点实验室基金项目(6142605200302);国家自然科学基金项目(62001442)
详细信息
    作者简介:

    杨 浩, mushui9@qq.com

    通讯作者:

    余 川, yuchuan@263.com

  • 中图分类号: O461

Statistical characteristics of S-band microwave pulse breakdown time in free space

  • 摘要: 综合考虑有效初始电子产生理论、雪崩电子击穿理论等过程中的击穿延迟时间,探讨了开放空间微波脉冲的击穿延时概率分布,提出了重复频率微波脉冲击穿概率模型,定义了基于概率模型的微波脉冲击穿阈值。利用S波段微波准光学反射聚焦系统对一定气压大气击穿过程进行了模拟,监测击穿放电发光时刻作为击穿时间,分别在铯137放射源存在与否情况下开展了系列实验。研究结果表明,提高种子电子产生率相较于提高电离率是增大脉冲击穿概率更有效的方法;重复频率过程中,若存在累积效应,击穿延时概率分布曲线将左移并趋于稳定,击穿后的气体在短时间内容易再次击穿。
  • 图  1  实验装置示意图

    Figure  1.  Schematic diagram of experimental device

    图  2  击穿延时实验分布

    Figure  2.  Experimental distribution of breakdown delay time

    图  3  脉冲击穿概率拟合

    Figure  3.  Fitting of pulse breakdown probability

    图  4  击穿延时概率分布时间演化

    Figure  4.  Evolution of breakdown delay time probability distribution

    表  1  实验参数

    Table  1.   Parameters of experiments

    No.pressure/PaE/(kV·cm−1)ionization rate/MHzseed electron production rate
    A10000.9252.5
    B10001.29188.2
    C80001.87\low
    D80001.87\high
    下载: 导出CSV
  • [1] Barker R, Edi S. High power microwave source and technology[M]. Beijing: Tsinghua University Press, 2005: 154-158.
    [2] 杨浩, 闫二艳, 郑强林, 等. 临近空间高功率微波辐照放电试验技术[J]. 强激光与粒子束, 2019, 31:103216. (Yang Hao, Yan Eryan, Zheng Qianglin, et al. Examination research of high power microwave irradiation discharge in near space[J]. High Power Laser and Particle Beams, 2019, 31: 103216 doi: 10.11884/HPLPB201931.190151
    [3] Sprangle P, Hafizi B, Milchberg H, et al. Active remote detection of radioactivity based on electromagnetic signatures[J]. Physics of Plasmas, 2014, 21: 013103. doi: 10.1063/1.4861633
    [4] Isaacs J, Miao Chenlong, Sprangle P. Remote monostatic detection of radioactive material by laser-induced breakdown[J]. Physics of Plasmas, 2016, 23: 033507. doi: 10.1063/1.4943404
    [5] Nusinovich G S, Pu Ruifeng, Antonsen Jr T M, et al. Development of THz-range gyrotrons for detection of concealed radioactive materials[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2011, 32(3): 380-402. doi: 10.1007/s10762-010-9708-y
    [6] Nusinovich G S, Sprangle P, Semenov V E, et al. On the sensitivity of terahertz gyrotron based systems for remote detection of concealed radioactive materials[J]. Journal of Applied Physics, 2012, 111: 124912. doi: 10.1063/1.4730959
    [7] Dorozhkina D, Semenov V, Olsson T, et al. Investigations of time delays in microwave breakdown initiation[J]. Physics of Plasmas, 2006, 13: 013506. doi: 10.1063/1.2158696
    [8] Foster J, Krompholz H, Neuber A. Investigation of the delay time distribution of high power microwave surface flashover[J]. Physics of Plasmas, 2011, 18: 013502. doi: 10.1063/1.3534823
    [9] Kim D, Yu D, Sawant A, et al. Remote detection of radioactive material using high-power pulsed electromagnetic radiation[J]. Nature Communications, 2017, 8: 15394. doi: 10.1038/ncomms15394
    [10] 魏进进, 周东方, 余道杰, 等. 高功率微波作用下O离子解吸附产生种子电子过程[J]. 物理学报, 2016, 65:055202. (Wei Jinjin, Zhou Dongfang, Yu Daojie, et al. Seed electron production from O detachment in high power microwave air breakdown[J]. Acta Physica Sinica, 2016, 65: 055202 doi: 10.7498/aps.65.055202
    [11] Cook A M, Hummelt J S, Shapiro M A, et al. Measurements of electron avalanche formation time in W-band microwave air breakdown[J]. Physics of Plasmas, 2011, 18: 080707. doi: 10.1063/1.3626383
    [12] Edmiston G, Krile J, Neuber A, et al. High-power microwave surface flashover of a gas–dielectric interface at 90–760 torr[J]. IEEE Transactions on Plasma Science, 2006, 34(5): 1782-1788. doi: 10.1109/TPS.2006.883392
    [13] 魏进进, 周东方. 高功率微波脉冲大气击穿概率研究[J]. 强激光与粒子束, 2014, 26:063003. (Wei Jinjin, Zhou Dongfang. Probability distribution of high power microwave pulse breakdown in air[J]. High Power Laser and Particle Beams, 2014, 26: 063003 doi: 10.11884/HPLPB201426.063003
    [14] 杨浩, 闫二艳, 郑强林, 等. 一种准光反射聚焦微波放电大气等离子体装置[J]. 强激光与粒子束, 2019, 31:053002. (Yang Hao, Yan Eryan, Zheng Qianglin, et al. A microwave plasma system with quasi optical focusing reflector[J]. High Power Laser and Particle Beams, 2019, 31: 053002 doi: 10.11884/HPLPB201931.180350
    [15] 赵刚, 闫二艳, 陈朝阳, 等. 高功率微波大气击穿阈值分析及实验[J]. 强激光与粒子束, 2013, 25(s1):111-114. (Zhao Gang, Yan Eryan, Chen Chaoyang, et al. Analysis and experimental study on threshold of air breakdown by high power microwave[J]. High Power Laser and Particle Beams, 2013, 25(s1): 111-114
    [16] Hidaka Y, Choi E M, Mastovsky I, et al. Imaging of atmospheric air breakdown caused by a high-power 110-GHz pulsed Gaussian beam[J]. IEEE Transactions on Plasma Science, 2008, 36(4): 936-937. doi: 10.1109/TPS.2008.924612
    [17] Zhou Qianhong, Dong Zhiwei. Modeling study on pressure dependence of plasma structure and formation in 110 GHz microwave air breakdown[J]. Applied Physics Letters, 2011, 98: 161504. doi: 10.1063/1.3583452
    [18] Cook A, Shapiro M, Temkin R. Pressure dependence of plasma structure in microwave gas breakdown at 110 GHz[J]. Applied Physics Letters, 2010, 97: 011504. doi: 10.1063/1.3462320
    [19] Hagelaar G J M, Pitchford L C. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models[J]. Plasma Sources Science and Technology, 2005, 14(4): 722-733. doi: 10.1088/0963-0252/14/4/011
    [20] Phelps A V, Pitchford L C. Anisotropic scattering of electrons by N2 and its effect on electron transport[J]. Physical Review A, 1985, 31(5): 2932-2949. doi: 10.1103/PhysRevA.31.2932
    [21] SIGLO database[EB/OL]. [2013-06-04]. http://www.lxcat.laplace.univ-tlse.fr.
    [22] Lawton S A, Phelps A V. Excitation of the b1Σ+g state of O2 by low energy electrons[J]. The Journal of Chemical Physics, 1978, 69(3): 1055-1068. doi: 10.1063/1.436700
    [23] PHELPS database[EB/OL]. http://www.lxcat.laplace.univ-tlse.fr, retrieved June 4, 2013NOTE: 3 body attachment cross section are normalized to gas density in units of cm.
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  656
  • HTML全文浏览量:  267
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-25
  • 修回日期:  2021-10-28
  • 网络出版日期:  2021-11-03
  • 刊出日期:  2021-12-15

目录

    /

    返回文章
    返回