留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

连续波HF激光泵浦Fe2+: ZnSe激光器的可行性

李玉佳 吴克难 金玉奇 王增强 周冬建 王锋

李玉佳, 吴克难, 金玉奇, 等. 连续波HF激光泵浦Fe2+: ZnSe激光器的可行性[J]. 强激光与粒子束, 2021, 33: 111012. doi: 10.11884/HPLPB202133.210371
引用本文: 李玉佳, 吴克难, 金玉奇, 等. 连续波HF激光泵浦Fe2+: ZnSe激光器的可行性[J]. 强激光与粒子束, 2021, 33: 111012. doi: 10.11884/HPLPB202133.210371
Li Yujia, Wu Ke’nan, Jin Yuqi, et al. Feasibility of Fe2+: ZnSe laser pumped by continuous wave HF laser[J]. High Power Laser and Particle Beams, 2021, 33: 111012. doi: 10.11884/HPLPB202133.210371
Citation: Li Yujia, Wu Ke’nan, Jin Yuqi, et al. Feasibility of Fe2+: ZnSe laser pumped by continuous wave HF laser[J]. High Power Laser and Particle Beams, 2021, 33: 111012. doi: 10.11884/HPLPB202133.210371

连续波HF激光泵浦Fe2+: ZnSe激光器的可行性

doi: 10.11884/HPLPB202133.210371
基金项目: 国家自然科学基金项目(61875197, 61205139); 中国科学院科技创新基金项目(CXJJ-19S010, CXJJ-20S010); 中国科学院青年创新促进会项目(2016168)
详细信息
    作者简介:

    李玉佳,liyujia@dicp.ac.cn

    通讯作者:

    吴克难,wukn@dicp.ac.cn

  • 中图分类号: TN248.1

Feasibility of Fe2+: ZnSe laser pumped by continuous wave HF laser

  • 摘要: 针对目前Fe2+: ZnSe激光器缺乏有效的高功率泵浦源这一关键瓶颈,提出了采用连续波HF化学激光器泵浦Fe2+: ZnSe来实现4 μm波段激光输出的技术路线,结合实验和理论手段考察了此技术路线的可行性。首次获得了由连续波HF化学激光泵浦的Fe2+: ZnSe激光器的W级激光输出,输出功率约为1.7 W,谱线峰值波长为4.18 μm,出光时间约2 s。
  • 图  1  连续波HF化学激光器泵浦Fe2+: ZnSe晶体的原理性示意图

    Figure  1.  Schematic diagram of continuous wave HF chemical laser pumped Fe2+: ZnSe laser crystal

    图  2  HF全谱激光泵浦时的泵浦和输出光谱图

    Figure  2.  Pump and output spectrum when pumped by full spectrum HF laser

    图  3  2900 nm窄带激光泵浦时的输出激光光谱

    Figure  3.  Output spectrum when pumped by narrow band laser at 2900 nm

    图  4  晶体换热结构示意图

    Figure  4.  Schematic diagram of crystal heat transfer structure

    图  5  晶体上表面的温度分布图

    Figure  5.  Temperature distribution on the top surface of disk crystal

    图  6  不同厚度碟片晶体、铟和热沉下晶体上表面的径向温度分布

    Figure  6.  Radial temperature distribution on the top surface of disk crystal with different thickness of disk crystal, indium plate and heat spreader

    图  7  不同射流温度下晶体上表面的径向温度分布

    Figure  7.  Radial temperature distribution on the top surface of disk crystal with different cooling temperature

    图  8  不同泵浦功率密度下最大输出功率和光光转化效率随输出耦合率的变化

    Figure  8.  Output power and optical-optical conversion efficiency vs output coupling rate with different pump power density

    图  9  不同ASE阈值下最大输出功率随耦合率的变化

    Figure  9.  Output power vs output coupling rate with different ASE threshold

    图  10  不同腔内损耗下最大输出功率随耦合率的变化

    Figure  10.  Output power vs output coupling rate with different cavity loss

    表  1  各材料的物性参数

    Table  1.   Physical properties of materials

    materialradius/mmthickness/mmthermal expansion
    coefficient/℃−1
    Young’s
    modulus/Pa
    Poisson’s
    ratio
    thermal conductivity/
    (W·m−1·℃−1)
    disk251.007.10×10−67.03×10100.2818
    indium250.103.20×10−51.10×10100.4582
    heat spreader401.207.40×10−62.60×10110.288142
    下载: 导出CSV
  • [1] 王欢, 曹振松, 汪六三, 等. 水汽分子对CO2谱线加宽的影响[J]. 强激光与粒子束, 2010, 22(9):1982-1986. (Wang Huan, Cao Zhensong, Wang Liusan, et al. Effect of water vapor on spectrum broadening of CO2[J]. High Power Laser and Particle Beams, 2010, 22(9): 1982-1986 doi: 10.3788/HPLPB20102209.1982
    [2] Geldern R V, Nowak M E, Zimmer M, et al. Field-based stable isotope analysis of carbon dioxide by mid-infrared laser spectroscopy for carbon capture and storage monitoring[J]. Analytical Chemisitry, 2014, 86(24): 12191-12198. doi: 10.1021/ac5031732
    [3] 邬承就, 袁怿谦, 曹百灵, 等. 1.315 μm附近CO2的高分辨率吸收光谱[J]. 强激光与粒子束, 2003, 15(1):9-12. (Wu Chengjiu, Yuan Yiqian, Cao Bailing, et al. High resolution absorption spectra of CO2 near 1.315 μm[J]. High Power Laser and Particle Beams, 2003, 15(1): 9-12
    [4] 孟范江, 郭立红, 杨贵龙, 等. 大功率TEA CO2激光器系统中电磁干扰的抑制[J]. 强激光与粒子束, 2008, 20(2):177-182. (Meng Fanjiang, Guo Lihong, Yang Guilong, et al. Suppression of electromagnetic interference in high power TEA CO2 laser system[J]. High Power Laser and Particle Beams, 2008, 20(2): 177-182
    [5] Nelson D, McManus J, Herndon S, et al. New method for isotopic ratio measurements of atmospheric carbon dioxide using a 4.3 μm pulsed quantum cascade laser[J]. Applied Physics B, 2008, 90(2): 301-309. doi: 10.1007/s00340-007-2894-1
    [6] 沈满德. 高分辨率中红外温度自适应夜视成像系统[J]. 强激光与粒子束, 2013, 25(5):1144-1146. (Shen Mande. High-resolution midwave infrared temperature-adaptive night-vision imaging system[J]. High Power Laser and Particle Beams, 2013, 25(5): 1144-1146 doi: 10.3788/HPLPB20132505.1144
    [7] Klein P B, Furneaux J E, Henry R L. Laser oscillation at 3.53 μm from Fe2+ in n-InP: Fe[J]. Applied Physics Letters, 1983, 42(8): 638-640. doi: 10.1063/1.94057
    [8] Adams J J, Bibeau C, Page R H, et al. 4.0-4.5 μm lasing of Fe: ZnSe below 180 K, a new mid-infrared laser material[J]. Optics Letters, 1999, 24(23): 1720-1722. doi: 10.1364/OL.24.001720
    [9] Akimov V A, Voronov A A, Kozlovskii V I, et al. Efficient IR Fe: ZnSe laser continuously tunable in the spectral range from 3.77 to 4.40 microns[J]. Quantum Electron, 2004, 34(10): 912-914. doi: 10.1070/QE2004v034n10ABEH002789
    [10] Kernal J, Fedorov V V, Gallian A, et al. 3.9-4.8 μm gain-switched lasing of Fe: ZnSe at room temperature[J]. Optics Express, 2005, 13(26): 10608-10615. doi: 10.1364/OPEX.13.010608
    [11] Mirov S, Fedorov V, Martyshkin D, et al. Mid-IR lasers based on transition metal and rare-earth ion doped crystals[C]//Proc of SPIE. 2015: 94672K.
    [12] Firsov K N, Gavrishchuk E M, Kazantsev S Yu, et al. Increasing the radiation energy of ZnSe: Fe2+ laser at room temperature[J]. Laser Physics Letters, 2014, 11: 085001. doi: 10.1088/1612-2011/11/8/085001
    [13] Li Yingyi, Dai Tongyu, Duan Xiaoming, et al. Fe: ZnSe laser pumped by a 2.93-μm Cr, Er: YAG laser[J]. Chinese Physics B, 2019, 28(6): 195-198.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  740
  • HTML全文浏览量:  305
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-26
  • 修回日期:  2021-10-26
  • 网络出版日期:  2021-11-04
  • 刊出日期:  2021-11-15

目录

    /

    返回文章
    返回