留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向超短波接收机射频前端的电磁脉冲效应仿真与效应分级方法

刘昌 李瀚宇 鲍献丰 周海京

刘昌, 李瀚宇, 鲍献丰, 等. 面向超短波接收机射频前端的电磁脉冲效应仿真与效应分级方法[J]. 强激光与粒子束, 2021, 33: 123016. doi: 10.11884/HPLPB202133.210380
引用本文: 刘昌, 李瀚宇, 鲍献丰, 等. 面向超短波接收机射频前端的电磁脉冲效应仿真与效应分级方法[J]. 强激光与粒子束, 2021, 33: 123016. doi: 10.11884/HPLPB202133.210380
Liu Chang, Li Hanyu, Bao Xianfeng, et al. Electromagnetic pulse effect simulation and rating of RF front-end of super-heterodyne receiver[J]. High Power Laser and Particle Beams, 2021, 33: 123016. doi: 10.11884/HPLPB202133.210380
Citation: Liu Chang, Li Hanyu, Bao Xianfeng, et al. Electromagnetic pulse effect simulation and rating of RF front-end of super-heterodyne receiver[J]. High Power Laser and Particle Beams, 2021, 33: 123016. doi: 10.11884/HPLPB202133.210380

面向超短波接收机射频前端的电磁脉冲效应仿真与效应分级方法

doi: 10.11884/HPLPB202133.210380
详细信息
    作者简介:

    刘 昌,liu_chang@iapcm.ac.cn

  • 中图分类号: TN80

Electromagnetic pulse effect simulation and rating of RF front-end of super-heterodyne receiver

  • 摘要: 针对接收机射频前端在电磁脉冲环境作用下的电磁损伤过程模拟问题,以超短波接收机为具体研究对象,基于超外差式接收机电路功能模型,采用Verilog-a和SPICE网表联合建模方法,建立了射频前端低噪声放大器(LNA)电磁脉冲效应仿真模型(Extended LNA Model),并通过S参数仿真和瞬态仿真验证了LNA电磁脉冲效应模型具备正常功能仿真能力;为验证该模型的电磁脉冲损伤模拟能力,以标准电磁脉冲波形作为激励,以偶极子天线作为简化的天线前门耦合通道,在不同强度电磁脉冲作用下,接收机中频电路信号输出表现出了无影响、干扰、损毁的电磁脉冲效应过程,说明了建模方法的有效性;最后以EMP-天线耦合电压峰值作为阈值指标,分析得到了超短波接收机不同电磁脉冲效应等级对应的电压峰值阈值数据。
  • 图  1  超短波接收机基本原理

    Figure  1.  Basic scheme of super-heterodyne receiver

    图  2  超短波接收机功能电路模型

    Figure  2.  Conventional circuit model of super-heterodyne receiver

    图  3  LNA电路模型及其输出功率随输入功率变化特征

    Figure  3.  Circuit model of LNA and its output power vs input power

    图  4  LNA电路模型及其频选特征

    Figure  4.  Circuit model of LNA and its output power vs input power

    图  5  LNA电路模型及其输出功率随输入功率变化特征

    Figure  5.  Circuit model of LNA and its output power vs input power

    图  6  超短波接收机电磁脉冲效应电路模型

    Figure  6.  Circuit model of super-heterodyne receiver capable of electromagnetic pulse effect simulation

    图  7  偶极子天线等效电路模型

    Figure  7.  Equivalent circuit model for dipole antenna in free space

    图  8  170 V峰值瞬态电压脉冲输入及中频输出

    Figure  8.  170 V peak voltage pulse input and IF output

    图  9  347 V峰值瞬态电压脉冲输入及中频输出

    Figure  9.  347 V peak voltage pulse input and IF output

    图  10  3.5 kV峰值瞬态电压脉冲输入及中频输出

    Figure  10.  3.5 kV peak voltage pulse input and IF output

    表  1  超短波接收机电磁脉冲效应仿真阈值和效应分级

    Table  1.   EMP effects rating of super-heterodyne receiver

    no.ratingvoltage threshold/kV
    1 no effect 0~0.3
    2 disturbance 0.3~2.4
    3 damage >2400
    下载: 导出CSV
  • [1] Yang Hong, Yuan J S, Liu Yi, et al. Effect of gate-oxide breakdown on RF performance[J]. IEEE Transactions on Device and Materials Reliability, 2003, 3(3): 93-97. doi: 10.1109/TDMR.2003.816656
    [2] MÅnsson D, Thottappillil R, Nilsson T, et al. Susceptibility of civilian GPS receivers to electromagnetic radiation[J]. IEEE Transactions on Electromagnetic Compatibility, 2008, 50(2): 434-437. doi: 10.1109/TEMC.2008.921015
    [3] Chen Dong, Xu Liming, Zhang Bisheng, et al. Research on the effect of high power microwave on low noise amplifier and limiter based on the injection method[J]. Journal of Electromagnetic Analysis and Applications, 2010, 2(2): 111-115. doi: 10.4236/jemaa.2010.22016
    [4] Zhen Kelong, Lü Shanwei, Zhang Yan. Research on damage of intense electromagnetic pulse to radar receiving system[C]//Proceedings of 2012 5th Global Symposium on Millimeter-Waves. 2012: 458-461.
    [5] 李岩, 程二威, 张冬晓, 等. 无人机收发信机快沿电磁脉冲效应研究[J]. 强激光与粒子束, 2018, 30:103201. (Li Yan, Cheng Erwei, Zhang Dongxiao, et al. Effect of fast rise-time electromagnetic pulse on UAV transceiver[J]. High Power Laser and Particle Beams, 2018, 30: 103201 doi: 10.11884/HPLPB201830.180127
    [6] Zhang Cunbo, Wang Honggang, Zhang Jiande, et al. Nonlinear and damage properties of BJT injected with microwave pulses[J]. IEEE Transactions on Plasma Science, 2016, 44(3): 239-244. doi: 10.1109/TPS.2016.2524661
    [7] Michels R, Willenbockel M, Gronwald F. A parametric study of an energy storage effect due to nonlinear components and HPEM-excitation[C]//Proceedings of 2019 International Symposium on Electromagnetic Compatibility-EMC EUROPE. Barcelona, Spain, 2019: 59-64.
    [8] 李亚南, 谭志良, 宋培姣. 射频前端强电磁脉冲防护模块设计[J]. 强激光与粒子束, 2018, 30:013204. (Li Ya’nan, Tan Zhiliang, Song Peijiao. Simulation and design of RF front end electromagnetic protection module[J]. High Power Laser and Particle Beams, 2018, 30: 013204 doi: 10.11884/HPLPB201830.170194
    [9] Roche N J H, Khachatrian A, Buchner S P, et al. Impact of cumulative irradiation degradation and circuit board design on the parameters of ASETs induced in discrete BJT-based circuits[J]. IEEE Transactions on Nuclear Science, 2015, 62(6): 2732-2742. doi: 10.1109/TNS.2015.2498309
    [10] Dilli Z, Akturk A, Goldsman N, et al. An enhanced specialized SiC power MOSFET simulation system[C]//Proceedings of 2015 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). 2015: 463-466.
    [11] Baek J E, Cho Y M, Ko K C. Damage modeling of a low-noise amplifier in an RF front-end induced by a high power electromagnetic pulse[J]. IEEE Transactions on Plasma Science, 2017, 45(5): 798-804. doi: 10.1109/TPS.2017.2684196
    [12] 赵墨, 吴伟, 李进玺, 等. 基于Verilog-A模型的同轴电缆X射线响应电路仿真[J]. 强激光与粒子束, 2015, 27:103240. (Zhao Mo, Wu Wei, Li Jinxi, et al. Circuit simulation of cable response to X-ray radiation[J]. High Power Laser and Particle Beams, 2015, 27: 103240 doi: 10.11884/HPLPB201527.103240
    [13] 刘人豪, 王军. 纳米MOSFET毫米波噪声的简洁模型[J]. 强激光与粒子束, 2019, 31:084102. (Liu Renhao, Wang Jun. Compact model of millimeter wave noise in nano-MOSFET[J]. High Power Laser and Particle Beams, 2019, 31: 084102 doi: 10.11884/HPLPB201931.190059
    [14] Liao Yi, Hubing T H, Su Donglin. Equivalent circuit for dipole antennas in a lossy medium[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(8): 3950-3953. doi: 10.1109/TAP.2012.2201112
    [15] Tang T G, Tieng Q M, Gunn M W. Equivalent circuit of a dipole antenna using frequency-independent lumped elements[J]. IEEE Transactions on Antennas and Propagation, 1993, 41(1): 100-103. doi: 10.1109/8.210122
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  740
  • HTML全文浏览量:  346
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-30
  • 修回日期:  2021-10-22
  • 网络出版日期:  2021-11-02
  • 刊出日期:  2021-12-15

目录

    /

    返回文章
    返回