留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分布式反馈激光器模拟控温检测系统研制

丁向美 钟乐海 董静霆 杨江

丁向美, 钟乐海, 董静霆, 等. 分布式反馈激光器模拟控温检测系统研制[J]. 强激光与粒子束, 2021, 33: 111014. doi: 10.11884/HPLPB202133.210381
引用本文: 丁向美, 钟乐海, 董静霆, 等. 分布式反馈激光器模拟控温检测系统研制[J]. 强激光与粒子束, 2021, 33: 111014. doi: 10.11884/HPLPB202133.210381
Ding Xiangmei, Zhong Lehai, Dong Jingting, et al. Development of analog temperature control and detection system for distributed feedback laser[J]. High Power Laser and Particle Beams, 2021, 33: 111014. doi: 10.11884/HPLPB202133.210381
Citation: Ding Xiangmei, Zhong Lehai, Dong Jingting, et al. Development of analog temperature control and detection system for distributed feedback laser[J]. High Power Laser and Particle Beams, 2021, 33: 111014. doi: 10.11884/HPLPB202133.210381

分布式反馈激光器模拟控温检测系统研制

doi: 10.11884/HPLPB202133.210381
详细信息
    作者简介:

    丁向美,dxm68344162@163.com

    通讯作者:

    钟乐海,lhzhong@mypt.edu.cn

  • 中图分类号: TP29

Development of analog temperature control and detection system for distributed feedback laser

  • 摘要: 温度对分布式反馈(DFB)激光器的性能指标和工作寿命有着重要影响。针对宽温度范围下的激光器应用,分析了激光器温控系统的研究现状及趋势,给出了温控系统的设计原理,采用线性驱动与PID闭环控制方法,应用模拟器件,研制了一种DFB激光器的模拟控温检测系统,并利用该系统对1550 nm的DFB激光器进行了试验验证。结果表明,系统在−55 ℃~70 ℃的全温度范围下,保持长时间工作(≥2 h),激光器的工作状态稳定,中心波长未出现漂移。系统的温度控制精度随着工作环境温度的范围不同而有所差异,在室温环境下可达到±0.02 ℃,在全温范围内控制精度在±0.8 ℃以内,跟踪误差小于±0.5 dB。与传统的激光器温控系统相比,本系统工作温度范围宽、控制精度高,且体积小、成本低、简单可靠,对于温度环境要求较为严苛的DFB激光器应用场景,具有重要的工程实践意义。
  • 图  1  模拟控温检测系统框图

    Figure  1.  Block diagram of temperature control system

    图  2  温度检测电路

    Figure  2.  Temperature detection circuit

    图  3  误差放大电路

    Figure  3.  Error amplifying circuit

    图  4  PID补偿电路

    Figure  4.  PID compensation circuit

    图  5  TEC驱动电路图

    Figure  5.  TEC drive circuit diagram

    图  6  TEC驱动仿真电路图

    Figure  6.  TEC drive simulation circuit diagram

    图  7  LD温度监视电路图

    Figure  7.  LD temperature monitoring circuit diagram

    图  8  DFB激光器温度控制试验框图

    Figure  8.  Test block diagram of DFB laser temperature control system

    图  9  温度试验验证平台实物图

    Figure  9.  Photo of temperature test verification platform

    图  10  5只LD的三温数据曲线

    Figure  10.  Three-temperature data curve of 5 LDs

    图  11  5只LD的三温光功率曲线

    Figure  11.  Three-temperature optical power curve of 5 LDs

    表  1  5只LD的常温测试数据表

    Table  1.   Test data table of 5 LDs at 25 ℃

    No.conditionTe/℃Iatc/mAVth/VPout/dBmλ/nmRth/kΩT/℃ΔT/℃
    1initial state25800.8479.661547.631025/
    after 2 h25790.8479.661547.6310.0078824.98201−0.01789
    2initial state25600.84711.691548.041025/
    after 2 h25620.84711.681548.0410.0078824.98201−0.01789
    3initial state25600.84810.01548.711025/
    after 2 h25620.8489.991548.7110.0065424.98507−0.01493
    4initial state25590.84710.291547.931025/
    after 2 h25600.84710.291547.9310.0078824.98201−0.01789
    5initial state25770.8489.851548.541025/
    after 2 h25780.8489.851548.5410.0065424.98507−0.01493
    下载: 导出CSV

    表  2  5只LD的三温环境测试数据表

    Table  2.   Three-temperature environment test data table of 5 LDs

    No.Te/℃Iatc/mAVth/VPout/dBmλ/nmRth/kΩT/℃ΔT/℃TE/dB
    1+25800.8479.661547.631025//
    −557900.8519.311547.6310.1487924.66305−0.336950.35
    +706400.8419.621547.629.80132125.459060.45906/
    2+25600.84711.691548.041025//
    −557530.85111.591548.0310.1487924.66305−0.33695/
    +706360.84211.351548.039.83535425.379660.379660.34
    3+25600.84810.01548.711025//
    −557400.8529.681548.710.1470724.66689−0.33310.48
    +705800.83810.161548.79.66625425.777310.77731/
    4+25590.84710.291547.931025//
    −557450.8499.991547.9210.0780124.82263−0.177370.37
    +706270.83910.361547.929.73371625.617710.61771/
    5+25770.8489.851548.541025//
    −557790.859.61548.5610.0764824.82608−0.173910.32
    +705990.8439.921548.559.83446225.3817420.38174/
    下载: 导出CSV
  • [1] 穆叶, 胡天立, 陈晨, 等. 采用模拟PID控制的DFB激光器温度控制系统研制[J]. 红外与激光工程, 2019, 48:0405001. (Mu Ye, Hu Tianli, Chen Chen, et al. Development of temperature control system of DFB laser using analog PID control[J]. Infrared and Laser Engineering, 2019, 48: 0405001 doi: 10.3788/IRLA201948.0405001
    [2] 胡杨, 张亚军, 于锦泉. 用于半导体激光器的温控电路设计[J]. 红外与激光工程, 2010, 39(5):839-842. (Hu Yang, Zhang Yajun, Yu Jinquan. Design of temperature control circuit for laser diode[J]. Infrared and Laser Engineering, 2010, 39(5): 839-842 doi: 10.3969/j.issn.1007-2276.2010.05.012
    [3] 杨鹏, 胡业荣, 王贵山, 等. 温度对半导体激光器退化的影响[J]. 国防科技大学学报, 2020, 42(1):45-50. (Yang Peng, Hu Yerong, Wang Guishan, et al. Impact of temperature on degradations of laser diode[J]. Journal of National University of Defense Technology, 2020, 42(1): 45-50 doi: 10.11887/j.cn.202001007
    [4] 陈晨, 党敬民, 黄渐强, 等. 高稳定、强鲁棒性DFB激光器温度控制系统[J]. 吉林大学学报(工学版), 2013, 43(4):1004-1010. (Chen Chen, Dang Jingmin, Huang Jianqiang, et al. DFB laser temperature control system with high stability and strong robustness[J]. Journal of Jilin University (Engineering and Technology Edition), 2013, 43(4): 1004-1010
    [5] 李江澜, 石云波, 赵鹏飞, 等. TEC的高精度半导体激光器温控设计[J]. 红外与激光工程, 2014, 43(6):1745-1749. (Li Jianglan, Shi Yunbo, Zhao Pengfei, et al. High precision thermostat system with TEC for laser diode[J]. Infrared and Laser Engineering, 2014, 43(6): 1745-1749 doi: 10.3969/j.issn.1007-2276.2014.06.009
    [6] 夏金宝, 刘兆军, 张飒飒, 等. 快速半导体激光器温度控制系统设计[J]. 红外与激光工程, 2015, 44(7):1991-1995. (Xia Jinbao, Liu Zhaojun, Zhang Sasa, et al. Design of semiconductor laser quick temperature control system[J]. Infrared and Laser Engineering, 2015, 44(7): 1991-1995 doi: 10.3969/j.issn.1007-2276.2015.07.005
    [7] 鲍梦. 模糊理论和神经网络的激光器温控系统[J]. 激光杂志, 2017, 38(10):123-126. (Bao Meng. Laser temperature control system based on fuzzy theory and neural network[J]. Laser Journal, 2017, 38(10): 123-126
    [8] 刘熙明, 魏旭, 窦立刚. 激光系统中半导体激光器温度稳定系统研究与设计[J]. 强激光与粒子束, 2019, 31:021002. (Liu Ximing, Wei Xu, Dou Ligang. Research and design of semiconductor laser temperature stabilization system in laser system[J]. High Power Laser and Particle Beams, 2019, 31: 021002 doi: 10.11884/HPLPB201931.180335
    [9] 刘云芳, 张晓, 李建伟. 模拟PID电路参数自整定温控系统设计[J]. 低温工程, 2013(2):68-72. (Liu Yunfang, Zhang Xiao, Li Jianwei. Design of analog PID circuit system with parameter auto-tuning[J]. Cryogenics, 2013(2): 68-72 doi: 10.3969/j.issn.1000-6516.2013.02.013
    [10] GB/T 21548-2008, 光通信用高速直接调制半导体激光器的测量方法[S]

    GB/T 21548-2008, 光通信用高速直接调制半导体激光器的测量方法[S]. (GB/T 21548-2008, Methods of measurement of the high speed semiconductor lasers directly modulated for optical fiber communication systems[S]
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  691
  • HTML全文浏览量:  303
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-29
  • 修回日期:  2021-11-08
  • 网络出版日期:  2021-11-16
  • 刊出日期:  2021-11-15

目录

    /

    返回文章
    返回