留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于QMU的高空电磁脉冲下电气电子设备易损性评估方法

董宁 孙颖力 王宗扬 谢彦召 陈宇浩

董宁, 孙颖力, 王宗扬, 等. 基于QMU的高空电磁脉冲下电气电子设备易损性评估方法[J]. 强激光与粒子束, 2021, 33: 123011. doi: 10.11884/HPLPB202133.210386
引用本文: 董宁, 孙颖力, 王宗扬, 等. 基于QMU的高空电磁脉冲下电气电子设备易损性评估方法[J]. 强激光与粒子束, 2021, 33: 123011. doi: 10.11884/HPLPB202133.210386
Dong Ning, Sun Yingli, Wang Zongyang, et al. Threat assessment method based on quantification of margins and uncertainties for electrical electronic equipment under high-altitude electromagnetic pulse[J]. High Power Laser and Particle Beams, 2021, 33: 123011. doi: 10.11884/HPLPB202133.210386
Citation: Dong Ning, Sun Yingli, Wang Zongyang, et al. Threat assessment method based on quantification of margins and uncertainties for electrical electronic equipment under high-altitude electromagnetic pulse[J]. High Power Laser and Particle Beams, 2021, 33: 123011. doi: 10.11884/HPLPB202133.210386

基于QMU的高空电磁脉冲下电气电子设备易损性评估方法

doi: 10.11884/HPLPB202133.210386
基金项目: 中国核工业集团有限公司领创科研项目
详细信息
    作者简介:

    董 宁,dongning96@163.com

    通讯作者:

    谢彦召,yzxie@xjtu.edu.cn

  • 中图分类号: O441.2

Threat assessment method based on quantification of margins and uncertainties for electrical electronic equipment under high-altitude electromagnetic pulse

  • 摘要: 高空电磁脉冲(HEMP)可能造成广域基础设施的故障或损毁,考虑到经济原因,需要科学合理地评估其中关键电气电子设备在HEMP辐照下的易损性。将不确定性量化与设备效应评估相结合,总结出基于裕量与不确定性量化(QMU)的电气电子设备易损性评估方法及其工作流程,包括:筛选设备关键参数,通常为耦合通道电流、电压的范数;通过HEMP环境及其与设备耦合的数值仿真及不确定性量化,得到HEMP下设备关键参数的概率分布,作为设备的威胁水平;对工作状态下设备进行HEMP效应试验,通过统计推断得到设备效应阈值概率分布,作为设备在威胁下的强度;计算威胁水平与设备强度间的距离,量化设备关键参数的裕量及其不确定性,评估HEMP下的设备易损性。基于QMU的电气电子设备易损性评估方法还可为后续防护设计提供基础数据和评估方法。
  • 图  1  基于QMU的电气电子设备HEMP易损性评估工作流程

    Figure  1.  Procedures of the QMU-based vulnerability assessment for electrical and electronic equipment under HEMP

    图  2  HEMP与设备耦合过程不确定参数示意图

    Figure  2.   Uncertainty parameters within the coupling process between HEMP and equipment

    图  3   仰角与极化角分布示意图

    Figure  3.   Distribution of elevation angle and polarization angle

    图  4   脉冲电流注入效应试验平台示意图

    Figure  4.   Pulse current injection effect test platform

    图  5  用于QMU易损性评估的设备威胁电平、效应阈值概率分布曲线

    Figure  5.  Probability density function and cumulative distribution function of coupling current amplitude under HEMP (stress) and the effect threshold (strength)

    图  6   设备的威胁水平和效应阈值的蒙特卡罗采样

    Figure  6.  Sample seta of the stress and strength of equipment by 1000 times Monte-Carlo sampling

  • [1] Foster Jr J S, Gjelde E, Graham W R, et al. Report of the commission to assess the threat to the United States from electromagnetic pulse (EMP) attack. Volume 1: Executive report[R]. Washington DC: Committee on Electromagnetic Pulse Environment, 2004.
    [2] Foster Jr J S, Gjelde E, Graham W R, et al. Report of the commission to assess the threat to the United States from electromagnetic pulse (EMP) attack: Critical national infrastructures[R]. Electromagnetic Pulse (EMP) Commission MCLEAN VA, 2008.
    [3] U. S. Department of Energy. U. S. Department of Energy electromagnetic pulse resilience action plan[M]. New York: CreateSpace Independent Publishing Platform, 2017.
    [4] U. S. Department of Energy and the Electric Power Research Institute. Joint electromagnetic pulse resilience strategy[R]. Electric Power Research Institute, 2016.
    [5] 董宁, 谢彦召. 考虑参数不确定性的高空电磁脉冲E1分量环境计算及分析[J]. 强激光与粒子束, 2019, 31:070002. (Dong Ning, Xie Yanzhao. Early-time high-altitude electromagnetic pulse simulation and analysis considering parameter uncertainty[J]. High Power Laser and Particle Beams, 2019, 31: 070002 doi: 10.11884/HPLPB201931.190140
    [6] Cui Meng. Numerical simulation of the HEMP environment[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(3): 440-445. doi: 10.1109/TEMC.2013.2258024
    [7] RackwitzR. Reliability analysis—a review and some perspectives[J]. Structural Safety, 2001, 23(4): 365-395. doi: 10.1016/S0167-4730(02)00009-7
    [8] Sharp D H, Wood-SchultzMM. QMU and nuclear weapons certification: what’s under the hood[J]. Los Alamos Science, 2003, 28: 47-53.
    [9] Marcy P W, Williams B J, Tippetts T B. Quantification of margins and uncertainty for multicomponent systems[R]. Los Alamos: Los Alamos National Lab, 2019.
    [10] 彭忠明, 梁天锡, 魏发远. QMU与概率可靠性: 区别与联系[C]//技术融合创新·可靠服务企业·安全产品制胜——2013年全国机械行业可靠性技术学术交流会暨第四届可靠性工程分会第五次全体委员大会论文集. 2013

    Peng Zhongming, Liang Tianxi, Wei Fayuan. QMU and probabilistic reliability: difference and connection[C]//Proceedings of the 2013 National Reliability Technology Academic Conference of Machinery Industry and the Fifth Plenary Meeting of the Fourth Reliability Engineering Branch. 2013
    [11] 梁天锡, 彭忠明, 沈展鹏, 等. 基于裕量与不确定性量化的系统可靠性评估[J]. 科学技术与工程, 2017, 17(3):121-129. (Liang Tianxi, Peng Zhongming, Shen Zhanpeng, et al. System reliability assessment based on QMU[J]. Science Technology and Engineering, 2017, 17(3): 121-129 doi: 10.3969/j.issn.1671-1815.2017.03.018
    [12] 刘振中. 基于QMU的卫星电源系统抗辐射性能评估[D]. 长沙: 国防科学技术大学

    Liu Zhenzhong. Radiation effects evaluation of satellite electric power system based on quantifications of margins and uncertainties[D]. Changsha: National University of Defense Technology
    [13] 范如玉, 韩峰, 郭红霞. 电源系统抗伽玛总剂量辐射能力评估方法[J]. 强激光与粒子束, 2011, 23(2):536-540. (Fan Ruyu, Han Feng, Guo Hongxia. Assessment method of gamma-dose radiation hardness of power supply system[J]. High Power Laser and Particle Beams, 2011, 23(2): 536-540 doi: 10.3788/HPLPB20112302.0536
    [14] Ianoz M, Nicoara B I C, Radasky W A. Modeling of an EMP conducted environment[J]. IEEE Transactions on Electromagnetic Compatibility, 1996, 38(3): 400-413. doi: 10.1109/15.536070
    [15] 杜子韦华, 谢彦召. 架空及埋地多导体线缆对HEMP辐照的瞬态响应[J]. 强激光与粒子束, 2019, 31:070003. (Du Ziweihua, Xie Yan zhao. Transient response of overhead and buried multiconductor lines to HEMP[J]. High Power Laser and Particle Beams, 2019, 31: 070003 doi: 10.11884/HPLPB201931.190142
    [16] 李湛宇, 董宁, 纪锋, 等. 基于多项式混沌方法的场线耦合响应不确定度量化[J]. 强激光与粒子束, 2017, 29:113203. (Li Zhanyu, Dong Ning, Ji Feng, et al. Uncertainty quantification analysis of random field coupling to transmission lines based on polynomial chaos expansion method[J]. High Power Laser and Particle Beams, 2017, 29: 113203 doi: 10.11884/HPLPB201729.170135
    [17] 束国刚, 杜子韦华, 黄玮, 等. 核电站最小安全系统电磁脉冲效应试验研究[J]. 强激光与粒子束, 2018, 30:103203. (Shu Guogang, Du Ziweihua, Huang Wei, et al. Experiment research on electromagnetic effects of minimum safety system in nuclear power plant[J]. High Power Laser and Particle Beams, 2018, 30: 103203 doi: 10.11884/HPLPB201830.180115
    [18] Zhou Yi, Xie Yanzhao, Zhang Daozhong, et al. Modeling and performance evaluation of inductive couplers for pulsed current injection[J]. IEEE Transactions on Electromagnetic Compatibility, 2021, 63(3): 710-719. doi: 10.1109/TEMC.2020.3023042
    [19] 黄忠胜, 陈宇浩, 杨明, 等. 基于贝叶斯方法的设备级电磁脉冲效应评估[J]. 强激光与粒子束, 2015, 27:125002. (Huang Zhongsheng, Chen Yuhao, Yang Ming, et al. Effect assessment of electromagnetic pulse at equipment level based on Bayesian method[J]. High Power Laser and Particle Beams, 2015, 27: 125002 doi: 10.11884/HPLPB201527.125002
    [20] An Z W, Huang H Z, Liu Y. A discrete stress–strength interference model based on universal generating function[J]. Reliability Engineering & System Safety, 2008, 93(10): 1485-1490.
  • 加载中
图(6)
计量
  • 文章访问数:  828
  • HTML全文浏览量:  342
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-31
  • 修回日期:  2021-11-09
  • 网络出版日期:  2021-11-17
  • 刊出日期:  2021-12-15

目录

    /

    返回文章
    返回