留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2~18 GHz超宽带行波管慢波结构及互作用研究

吕俊 郝保良 寇建勇 崔建玲 周忠正

吕俊, 郝保良, 寇建勇, 等. 2~18 GHz超宽带行波管慢波结构及互作用研究[J]. 强激光与粒子束, 2021, 33: 113001. doi: 10.11884/HPLPB202133.210412
引用本文: 吕俊, 郝保良, 寇建勇, 等. 2~18 GHz超宽带行波管慢波结构及互作用研究[J]. 强激光与粒子束, 2021, 33: 113001. doi: 10.11884/HPLPB202133.210412
Lü Jun, Hao Baoliang, Kou Jianyong, et al. Study on slow wave structure and interaction of 2−18 GHz ultra-wide band traveling-wave tube[J]. High Power Laser and Particle Beams, 2021, 33: 113001. doi: 10.11884/HPLPB202133.210412
Citation: Lü Jun, Hao Baoliang, Kou Jianyong, et al. Study on slow wave structure and interaction of 2−18 GHz ultra-wide band traveling-wave tube[J]. High Power Laser and Particle Beams, 2021, 33: 113001. doi: 10.11884/HPLPB202133.210412

2~18 GHz超宽带行波管慢波结构及互作用研究

doi: 10.11884/HPLPB202133.210412
详细信息
    作者简介:

    吕 俊,804365618@qq.com

    通讯作者:

    郝保良,haobaoliang@cetc.com.cn

  • 中图分类号: TN124

Study on slow wave structure and interaction of 2−18 GHz ultra-wide band traveling-wave tube

  • 摘要: 为满足现代信息化战争对超宽带行波管的需求,对2~18 GHz超宽带行波管的高频慢波结构进行了研究分析。在传统宽带行波管的基础上引入非翼片加载段的正常色散特性,首次实现2~18 GHz 超宽带高频慢波结构设计,最大带宽达到9∶1。同时输出端螺旋线螺距调整为正渐变分布,能够进一步优化低频段二次谐波抑制比,提高高频段饱和输出功率。结果表明,全频带的基波输出功率达到100 W,二次谐波抑制比优于−3 dBc,2 GHz频点二次谐波抑制比优于−5 dBc,为超宽带大功率器件的设计提供了理论基础。
  • 图  1  一个周期内的高频慢波结构

    Figure  1.  High frequency slow wave structure in a period

    图  2  n次谐波纵向电场

    Figure  2.  nth harmonic longitudinal electric field

    图  3  同步区下的正反常色散

    Figure  3.  Positive and negative dispersion at synchronization region

    图  4  高频慢波结构

    Figure  4.  High frequency slow wave structures

    图  5  正反常色散和螺距组合下的高频慢波结构

    Figure  5.  High frequency slow wave structures with positive and negative dispersion and different pitch

    图  6  冷参数特性随频率的变化规律

    Figure  6.  Characteristics of cooling parameters varying with frequency

    图  7  不同的螺距P1P0色散曲线比较

    Figure  7.  Comparison of dispersion curves of different pitch P1 and P0

    图  8  双螺距跳变结构helix 1

    Figure  8.  Double pitch step structure of helix 1

    图  9  不同L1/Li下基波输出功率和二次谐波比

    Figure  9.  Fundamental output power and 2nd harmonic ratio at L1/Li

    图  10  不同L1段长度下基波输出功率和二次谐波比

    Figure  10.  Fundamental output power and 2nd harmonic ratio at different lengths of L1

    图  11  不同螺距P1下的基波输出功率和二次谐波比

    Figure  11.  Fundamental output power and 2nd harmonic ratio at different pitch of P1

    图  12  均匀磁场和周期磁场聚焦的谐波比、饱和输出功率和电子效率的比较

    Figure  12.  Comparison of harmonics, saturated output power and electronic efficiency of uniform and periodic magnetic field

    图  13  18 GHz处的均匀磁场和周期磁场聚焦的电子轨迹

    Figure  13.  Electron trajectories of uniform and periodic magnetic field at 18 GHz

    图  14  Helix 1-1和helix 1-2的谐波比,饱和输出功率和电子效率的比较

    Figure  14.  Comparison of harmonics, saturated output power and electronic efficiency of helix 1-1 and helix 1-2

    表  1  基本参量

    Table  1.   The basic parameters

    $ {V_0} $/V$ {I_0} $/A$ a $/mm$ {r_0} $/mm
    45000.180.720.288
    下载: 导出CSV

    表  2  高频慢波结构参量

    Table  2.   High frequency slow wave structure parameters

    Vn/(°)Rl/mmRs/mmW1/mmW2/mmRc/mm
    651.271.020.40.41.65
    下载: 导出CSV
  • [1] Gilmour A S. 速调管、行波管、磁控管、正交场放大器和回旋管[M]. 丁耀根, 张兆传, 译. 北京: 国防工业出版社, 2012

    GilmourAS. Klystrons, traveling wave tubes, magnetrons, crossed-field amplifiers and gyrotrons[M]. Ding Yaogen, Zhang Zhaochuan, trans. Beijing: National Defense Industry Press, 2012
    [2] VED IPP. Rethinking what we know about vacuum electronic devices[J]. The Journal of Electronic Defense, 2019, 42(2): 1-4.
    [3] Levush B. The design and manufacture of vacuum electronic amplifiers: progress and challenges[C]//Proceedings of 2019 International Vacuum Electronics Conference. 2019: 1-5.
    [4] 李建兵, 林鹏飞, 郝保良, 等. 微波功率放大器发展概述[J]. 强激光与粒子束, 2020, 32:073001. (Li Jianbing, Lin Pengfei, Hao Baoliang, et al. Overview of development of microwave power amplifiers[J]. High Power Laser and Particle Beams, 2020, 32: 073001
    [5] 王斌, 王风岩, 周旭, 等. 微波功率行波管及模块的应用发展趋势[J]. 真空电子技术, 2019(2):1-7. (Wang Bin, Wang Fengyan, Zhou Xu, et al. Application and development trend of TWTs and MPMs[J]. Vacuum Electronics, 2019(2): 1-7
    [6] Seo W B, Kim H J, Joo J H, et al. Fabrication and experiments on a 6-18 GHz, vaned helix TWT amplifier[C]//Proceedings of 2006 IEEE International Vacuum Electronics Conference Held Jointly with 2006 IEEE International Vacuum Electron Sources. 2006: 187-188.
    [7] Ghosh T K, Challis A J, Tokeley A, et al. Design and development of 2 to 3 octave band helix mini-TWTs[C]//Proceedings of 2011 IEEE International Vacuum Electronics Conference. 2011.
    [8] Wei Yixue, Gan Yuan, Chen Yinxing, et al. A 50-W broadband mini-MPM for electronic countermeasure[J]. IEEE Transactions on Electron Devices, 2018, 65(6): 2206-2211. doi: 10.1109/TED.2018.2791723
    [9] 雷禄容, 袁欢, 刘振帮, 等. 宽带相对论速调管放大器模拟设计[J]. 强激光与粒子束, 2016, 28:023003. (Lei Lurong, Yuan Huan, Liu Zhenbang, et al. Design of broadband relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2016, 28: 023003 doi: 10.11884/HPLPB201628.023003
    [10] Sumathy M, Gupta S K, Kumar B, et al. Cold circuit analysis of a coupled-cavity slow wave structure for mm-wave TWT[J]. IEEE Transactions on Plasma Science, 2020, 48(9): 3024-3029. doi: 10.1109/TPS.2020.3015513
    [11] 胡玉禄. 行波管注波互作用基础理论与CAD技术研究[D]. 成都: 电子科技大学, 2011: 55-75

    Hu Yulu. Study of beam wave interaction basic theory and CAD technique for traveling wave tube[D]. Chengdu: University of Electronic Science and Technology of China, 2011: 55-75
    [12] Frisoni M A. Theoretical design study of a 2-18 GHz bandwidth helix TWT (Traveling Wave Tube) amplifier[R]. BADC-TR-87-22, 1987.
    [13] 罗健. 行波管的正向设计理论及技术研究[D]. 成都: 电子科技大学, 2015: 15-30

    Luo Jian. Research on theory and forward design technology of TWTs[D]. Chengdu: University of Electronic Science and Technology of China, 2015: 15-30
    [14] Hu Yulu, Wang Yanmei, Yang Zhonghai, et al. Study the effect of positive dispersion in input circuit of broadband helix traveling wave tubes[C]//Proceedings of the IEEE 14th International Vacuum Electronics Conference. 2013.
    [15] Srivastava V, Carter R G, Ravinder B, et al. Design of helix slow-wave structures for high efficiency TWTs[J]. IEEE Transactions on Electron Devices, 2000, 47(12): 2438-2443. doi: 10.1109/16.887034
    [16] Xu Li, Yang Zhonghai, Li Bin, et al. High-frequency circuit simulator: an advanced three-dimensional finite-element electromagnetic-simulation tool for microwave tubes[J]. IEEE Transactions on Electron Devices, 2009, 56(5): 1141-1151. doi: 10.1109/TED.2009.2016078
    [17] 刘盛纲, 李宏福, 王文祥, 等. 微波电子学导论[M]. 北京: 国防工业出版社, 1995: 161-184

    Liu Shenggang, Li Hongfu, Wang Wenxiang, et al. Introduction to microwave electronics[M]. Beijing: National Defense Industry Press, 1995: 161-184
    [18] 杜秉初, 汪健如. 电子光学[M]. 北京: 清华大学出版社, 2002: 400-422

    Du Bingchu, Wang Jianru. Electron optics[M]. Beijing: Tsinghua University Press, 2002: 400-422
    [19] Ghosh T K, Challis A J, Jacob A, et al. Design of helix pitch profile for broadband traveling-wave tubes[J]. IEEE Transactions on Electron Devices, 2009, 56(5): 1135-1140. doi: 10.1109/TED.2009.2015137
    [20] Ghosh T K, Challis A J, Jacob A, et al. Improvements in performance of broadband helix traveling-wave tubes[J]. IEEE Transactions on Electron Devices, 2008, 55(2): 668-673. doi: 10.1109/TED.2007.913006
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  942
  • HTML全文浏览量:  423
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-20
  • 修回日期:  2021-11-10
  • 网络出版日期:  2021-11-22
  • 刊出日期:  2021-11-15

目录

    /

    返回文章
    返回