留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分数阶傅里叶变换的模式测控一体化方法

文俊龙 李玮 谭建昌 郑世杰 李筱薇 罗韵 王建军 冯国英

文俊龙, 李玮, 谭建昌, 等. 基于分数阶傅里叶变换的模式测控一体化方法[J]. 强激光与粒子束, 2021, 33: 111009. doi: 10.11884/HPLPB202133.210489
引用本文: 文俊龙, 李玮, 谭建昌, 等. 基于分数阶傅里叶变换的模式测控一体化方法[J]. 强激光与粒子束, 2021, 33: 111009. doi: 10.11884/HPLPB202133.210489
Wen Junlong, Li Wei, Tan Jianchang, et al. Integrated mode measurement and control method based on fractional Fourier transform[J]. High Power Laser and Particle Beams, 2021, 33: 111009. doi: 10.11884/HPLPB202133.210489
Citation: Wen Junlong, Li Wei, Tan Jianchang, et al. Integrated mode measurement and control method based on fractional Fourier transform[J]. High Power Laser and Particle Beams, 2021, 33: 111009. doi: 10.11884/HPLPB202133.210489

基于分数阶傅里叶变换的模式测控一体化方法

doi: 10.11884/HPLPB202133.210489
基金项目: 等离子体物理重点实验室基金项目(6142A04200210);国家自然科学基金委员会-中国工程物理研究院联合基金项目(U1730141)
详细信息
    作者简介:

    文俊龙,2645670798@qq.com

    通讯作者:

    李 玮,weili@scu.edu.cn

    冯国英,guoing_feng@scu.edu.cn

  • 中图分类号: TN249

Integrated mode measurement and control method based on fractional Fourier transform

  • 摘要: 提出了一种基于分数阶傅里叶变换的模式测控一体化方法。利用分数阶傅里叶变换光路对光纤模式耦合态进行空间调制和相位调制,以实现模式的有效分解。与双重傅里叶变换(F2)法以及空间和频谱成像(S2)法相比,采用的分数阶傅里叶变换法,通过改变分数阶参数,控制模式的空间分布以及模式间的叠加状态,更易于分解出高阶模式。基于分数阶傅里叶变换的模式测量方法可在更广泛空间,研究模式的空间和相位叠加以及模式分解,也可退化为F2法和S2法。
  • 图  1  分数阶傅里叶变换光路图

    Figure  1.  Diagram of fractional Fourier transform optical path

    图  2  中心耦合与偏移耦合对应的横向光强分布

    Figure  2.  Transverse light intensity distributions corressponding to the central coupling and the offset coupling

    图  3  光斑横向光强分布随模式间相位差变化的情况

    Figure  3.  Transverse light intensity distributions corressponding to different phase differences between modes

    图  4  耦合中心一点处横向强度分布随模式间相位差的变化曲线

    Figure  4.  Curve of the transverse intensity distributions at one point in the center of the coupling along with the phase difference between the modes

    图  5  分数阶傅里叶变换模式测控一体化系统

    Figure  5.  Fractional Fourier modal integrated measurement and control system

    图  6  分数傅里叶变换阶数与模式分解之间的关系

    Figure  6.  Relation between the fractional Fourier transform order and the modal decomposition

    图  7  发射距离和探测距离对模场分布以及MPI的影响

    Figure  7.  Influence of the emission distance and the detection distance on the mode field distributions and the MPI

    图  8  在图7(d)中对应尖峰的模式沿x方向和y方向的光强分布

    Figure  8.  Mode intensity distributions in x direction and y direction corresponding to spikes in Fig.7(d)

    图  9  原光斑在x方向的光强分布与探测距离的关系

    Figure  9.  Relation of intensity distributions of the primary light spotin x direction with the detection distance

    图  10  采用分数阶傅里叶变换法和$ {{\text{S}}^{\text{2}}} $法测量得到的模式

    Figure  10.  Modes measured by the fractional Fourier transform method ((a)~(d)) and S2 method ((e)~(h))

  • [1] Zhao Yongliang, Su Delong, Li Yongxi. A multi-parameter sensor based on cascaded photonic crystal cavities filled with magnetic fluid[J]. Optics and Photonics Journal, 2020, 10(7): 183-196. doi: 10.4236/opj.2020.107020
    [2] Schulze C, Brüning R, Schröter S, et al. Mode coupling in few-mode fibers induced by mechanical stress[J]. Journal of Lightwave Technology, 2015, 33(21): 4488-4496. doi: 10.1109/JLT.2015.2475603
    [3] Randel S, Ryf R, Sierra A, et al. 6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization[J]. Optics Express, 2011, 19(17): 16697-16707. doi: 10.1364/OE.19.016697
    [4] Willner A E, Huang H, Yan Y, et al. Optical communications using orbital angular momentum beams[J]. Advances in Optics and Photonics, 2015, 7(1): 66-106. doi: 10.1364/AOP.7.000066
    [5] Li Guifang, Bai Neng, Zhao Ningbo, et al. Space-division multiplexing: the next frontier in optical communication[J]. Advances in Optics and Photonics, 2014, 6(4): 413-487. doi: 10.1364/AOP.6.000413
    [6] Hansen K R, Alkeskjold T T, Broeng J, et al. Theoretical analysis of mode instability in high-power fiber amplifiers[J]. Optics Express, 2013, 21(2): 1944-1971. doi: 10.1364/OE.21.001944
    [7] Eidam T, Wirth C, Jauregui C, et al. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers[J]. Optics Express, 2011, 19(14): 13218-13224. doi: 10.1364/OE.19.013218
    [8] Jauregui C, Eidam T, Otto H J, et al. Physical origin of mode instabilities in high-power fiber laser systems[J]. Optics Express, 2012, 20(12): 12912-12925. doi: 10.1364/OE.20.012912
    [9] Proctor J, Kutz J N. Nonlinear mode-coupling for passive mode-locking: application of waveguide arrays, dual-core fibers, and/or fiber arrays[J]. Optics Express, 2005, 13(22): 8933-8950. doi: 10.1364/OPEX.13.008933
    [10] Yun S H, Hwang I K, Kim B Y. All-fiber tunable filter and laser based on two-mode fiber[J]. Optics Letters, 1996, 21(1): 27-29. doi: 10.1364/OL.21.000027
    [11] Gruner-Nielsen L, Sun Yi, Nicholson J W, et al. Few mode transmission fiber with low DGD, low mode coupling, and low loss[J]. Journal of Lightwave Technology, 2012, 30(23): 3693-3698. doi: 10.1109/JLT.2012.2227243
    [12] Yan Wei, Xu Xiaojun, Wang Jianguo. Modal decomposition for few mode fibers using the fractional Fourier system[J]. Optics Express, 2019, 27(10): 13871-13883. doi: 10.1364/OE.27.013871
    [13] 张澍霖, 冯国英, 周寿桓. 基于空间域和频率域傅里叶变换F2的光纤模式成分分析[J]. 物理学报, 2016, 65:154202. (Zhang Shulin, Feng Guoying, Zhou Shouhuan. Fiber modal content analysis based on spatial and spectral Fourier transform[J]. Acta Physica Sinica, 2016, 65: 154202 doi: 10.7498/aps.65.154202
    [14] 冯国英, 郑世杰, 谭建昌, 等. 光纤激光模场及表征技术进展[J]. 强激光与粒子束, 2021, 33:031001. (Feng Guoying, Zheng Shijie, Tan Jianchang, et al. Progress on mode field distribution and characterization technology of the optical fiber laser[J]. High Power Laser and Particle Beams, 2021, 33: 031001
    [15] Nicholson J W, Yablon A D, Ramachandran S, et al. Spatially and spectrally resolved imaging of modal content in large-mode-area fibers[J]. Optics Express, 2008, 16(10): 7233-7243. doi: 10.1364/OE.16.007233
    [16] Zhou Hailong, Zhu Qiuchi, Liang Wenhai, et al. Mode measurement of few-mode fibers by mode-frequency mapping[J]. Optics Letters, 2018, 43(7): 1435-1438. doi: 10.1364/OL.43.001435
    [17] Lohmann A W. Image rotation, Wigner rotation, and the fractional Fourier transform[J]. Journal of the Optical Society of America A, 1993, 10(10): 2181-2186. doi: 10.1364/JOSAA.10.002181
    [18] 吴平,李波,陈天禄,等. 分数傅里叶变换面上余弦-高斯光束的变换特性[J]. 强激光与粒子束, 2005, 17(12):1787-1790. (Wu Ping , Li Bo, Chen Tianlu, et al. Transformation properties of a Cosine-Gaussian beam in fractional Fourier transform plane[J]. High Power Laser and Particle Beams, 2005, 17(12): 1787-1790
    [19] Dai Z P, Wang Y B, Zeng Q, et al. Propagation and transformation of four-petal Gaussian vortex beams in fractional Fourier transform optical system[J]. Optik - International Journal for Light and Electron Optics, 2021, 167644: 1-9. doi: 10.1016/j.ijleo.2021.167644
    [20] Wang Chongxi, Pan Chen, Xu Jinsheng, et al. Analysis of misalignment, twist, and bend in few-mode fibers using spatially and spectrally resolved imaging[J]. Optical Fiber Technology, 2020, 56: 102205. doi: 10.1016/j.yofte.2020.102205
    [21] Wielandy S. Implications of higher-order mode content in large mode area fibers with good beam quality[J]. Optics Express, 2007, 15(23): 15402-15409. doi: 10.1364/OE.15.015402
    [22] 文亮. 分数傅里叶变换及其应用[D]. 重庆: 重庆大学, 2008: 1-40

    Wen Liang. Fractional Fourier transform and its application[J]. Chongqing: Chongqing University, 2008: 1-40
  • 加载中
图(10)
计量
  • 文章访问数:  657
  • HTML全文浏览量:  278
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-15
  • 修回日期:  2021-11-10
  • 录用日期:  2021-11-20
  • 网络出版日期:  2021-11-22
  • 刊出日期:  2021-11-15

目录

    /

    返回文章
    返回