留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于马赫-曾德干涉的全光纤双参量传感器

李筱薇 谭建昌 冯国英

李筱薇, 谭建昌, 冯国英. 基于马赫-曾德干涉的全光纤双参量传感器[J]. 强激光与粒子束, 2021, 33: 111010. doi: 10.11884/HPLPB202133.210498
引用本文: 李筱薇, 谭建昌, 冯国英. 基于马赫-曾德干涉的全光纤双参量传感器[J]. 强激光与粒子束, 2021, 33: 111010. doi: 10.11884/HPLPB202133.210498
Li Xiaowei, Tan Jiachang, Feng Guoying. All-fiber dual-parameter sensor based on Mach-Zehnder interference[J]. High Power Laser and Particle Beams, 2021, 33: 111010. doi: 10.11884/HPLPB202133.210498
Citation: Li Xiaowei, Tan Jiachang, Feng Guoying. All-fiber dual-parameter sensor based on Mach-Zehnder interference[J]. High Power Laser and Particle Beams, 2021, 33: 111010. doi: 10.11884/HPLPB202133.210498

基于马赫-曾德干涉的全光纤双参量传感器

doi: 10.11884/HPLPB202133.210498
基金项目: 等离子体物理重点实验室基金项目(6142A04200210);国家自然科学基金委员会-中国工程物理研究院联合基金项目(U1730141)
详细信息
    作者简介:

    李筱薇,550701221@qq.com

    通讯作者:

    冯国英,guoing_feng@scu.edu.cn

  • 中图分类号: TN249

All-fiber dual-parameter sensor based on Mach-Zehnder interference

  • 摘要: 提出一种基于S形-错位结构的全光纤马赫-曾德干涉仪(MZI)双参量传感器。该传感结构是采用单模光纤在光纤熔接机中通过简单的放电和熔接等步骤制备而成。顺时针扭转时, 传感器的传输光谱向短波长方向偏移; 逆时针扭转, 向长波长方向偏移。对传感器的实验研究结果表明,该传感器在光纤横截面上顺时针和逆时针两个旋转方向上的扭曲传感灵敏度分别为−223 pm/(rad·cm−1), 140 pm/(rad·cm−1),且可实现扭转方向的判别,在一定应变范围内的应变灵敏度为0.145×106 dB/ε(这里ε为应变),且温度交叉灵敏度极小,可忽略不计。因此,这种基于单模光纤的纤芯-包层MZI双参量传感器具有传感灵敏度高,体积小巧,工艺简单,成本低廉且可判别扭转方向的优点,有望成为众多双参量测量操作中良好的候选仪器之一。
  • 图  1  MZI在1064 nm波长处的传播的光场分布和归一化能量分布

    Figure  1.  Light field distribution and normalized energy distribution of MZI propagation at 1064 nm

    图  2  制备出的S形-错位微光纤结构的光学显微图

    Figure  2.  Optical micrograph of the prepared S-shaped-dislocation micro-fiber structure

    图  3  传感器扭曲特性测量装置

    Figure  3.  Device for measuring the twisting characteristics of the sensor

    图  4  扭转时的干涉光谱响应

    Figure  4.  Interference spectral response of the twisted fiber

    图  5  不同指示波谷偏移量线性拟合

    Figure  5.  Linear fitting of different indicating dips

    图  6  传感器的应变特性的测量装置

    Figure  6.  Device for measuring the strain characteristics of the sensor

    图  7  传感器的应变干涉光谱响应及不同应变条件下指示波谷强度的拟合曲线

    Figure  7.  Strain interference spectrum response of the sensor and the fitting curve of the indicating dip intensity under different strain conditions

    图  8  温度交叉传感的测量装置

    Figure  8.  Measuring device for temperature cross-sensing

    图  9  响应干涉光谱的波长偏移量

    Figure  9.  Wavelength shift of response interference spectrum

  • [1] Fu Guangwei, Li Yunpu, Li Qifeng, et al. Temperature insensitive vector bending sensor based on asymmetrical cascading SMF-PCF-SMF structure[J]. IEEE Photonics J, 2017, 9: 7103114. doi: 10.1109/JPHOT.2017.2692277
    [2] He Wei, Fang Yitao, Zhu Lianqing, et al. Optical fiber interference sensor based on fiber ending micro-groove fabricated by femtosecond laser[J]. Optik, 2018, 158: 1295-1301. doi: 10.1016/j.ijleo.2018.01.014
    [3] Zhang Wen, Hao Jiaqi, Dong Mingli, et al. A dual-parameter sensor for strain and temperature measurement featuring cascaded LPFG-FP structure[J]. Optik, 2018, 171: 632-641. doi: 10.1016/j.ijleo.2018.05.133
    [4] Lin C Y, Wang L A, Chern G W. Corrugated long-period fiber gratings as strain, torsion, and bending sensors[J]. J Lightw Technol, 2001, 19(8): 1159-1168. doi: 10.1109/50.939797
    [5] Wang Yiping, Wang Ming, Huang Xiaoqin. In fiber Bragg grating twist sensor based on analysis of polarization dependent loss[J]. Opt Express, 2013, 21(10): 11913-11920. doi: 10.1364/OE.21.011913
    [6] Yu Fangda, Xue Peng, Zheng Jie. Enhancement of refractive index sensitivity by bending a core-offset in-line fiber Mach-Zehnder interferometer[J]. IEEE Sens J, 2019, 19(9): 3328-3334. doi: 10.1109/JSEN.2019.2892718
    [7] Tian Zhaobing, Yam S S H, Loock H P. Single-mode fiber refractive index sensor based on core-offset attenuators[J]. IEEE Photonics Technol Lett, 2008, 20(16): 1387-1389. doi: 10.1109/LPT.2008.926832
    [8] Wang Qi, Kong Lingxin, Dang Yunli, et al. High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer[J]. Sens Actuators B:Chem, 2016, 225: 213-220. doi: 10.1016/j.snb.2015.11.047
    [9] Zheng Jiarong, Yan Peiguang, Yu Yongqin, et al. Temperature and index insensitive strain sensor based on a photonic crystal fiber in line Mach-Zehnder interferometer[J]. Opt Commun, 2013, 297: 7-11. doi: 10.1016/j.optcom.2013.01.063
    [10] Rao Yunjiang, Zhu Tao, Mo Qiuju. Highly sensitive fiber-optic torsion sensor based on an ultra-long-period fiber grating[J]. Opt Commun, 2006, 266(1): 187-190. doi: 10.1016/j.optcom.2006.04.045
    [11] Bai Zhiyong, Deng Mi, Liu Shen, et al. Torsion sensor with rotation direction discrimination based on a pre-twisted in-fiber Mach-Zehnder interferometer[J]. IEEE Photonics J, 2017, 9: 7103708. doi: 10.1109/JPHOT.2017.2702662
    [12] Zhou Jiangtao, Liao Changrui, Wang Yiping, et al. Simultaneous measurement of strain and temperature by employing fiber Mach-Zehnder interferometer[J]. Opt Express, 2014, 22(2): 1680-1686. doi: 10.1364/OE.22.001680
    [13] Subramanian R, Chengliang Z, Hua Z, et al. Torsion, strain, and temperature sensor based on helical long-period fiber gratings[J]. IEEE Photonics Technology Letters, 2018, 30: 327-330. doi: 10.1109/LPT.2017.2787157
    [14] Liu Y, Deng H, Yuan L. Directional torsion and strain discrimination based on Mach-Zehnder interferometer with off-axis twisted deformations[J]. Optics and Laser Technology, 2019, 120: 105754. doi: 10.1016/j.optlastec.2019.105754
  • 加载中
图(9)
计量
  • 文章访问数:  633
  • HTML全文浏览量:  297
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-10
  • 修回日期:  2021-11-10
  • 录用日期:  2021-11-20
  • 网络出版日期:  2021-11-22
  • 刊出日期:  2021-11-15

目录

    /

    返回文章
    返回