留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于可编程逻辑阵列的速调管预失真模型

谢春杰 唐雷雷 梁钰 冯光耀 王琳 周泽然

谢春杰, 唐雷雷, 梁钰, 等. 基于可编程逻辑阵列的速调管预失真模型[J]. 强激光与粒子束, 2022, 34: 031022. doi: 10.11884/HPLPB202234.210214
引用本文: 谢春杰, 唐雷雷, 梁钰, 等. 基于可编程逻辑阵列的速调管预失真模型[J]. 强激光与粒子束, 2022, 34: 031022. doi: 10.11884/HPLPB202234.210214
Xie Chunjie, Tang Leilei, Liang Yu, et al. Predistortion model of klystron based on Field Programmable Gate Array (FPGA)[J]. High Power Laser and Particle Beams, 2022, 34: 031022. doi: 10.11884/HPLPB202234.210214
Citation: Xie Chunjie, Tang Leilei, Liang Yu, et al. Predistortion model of klystron based on Field Programmable Gate Array (FPGA)[J]. High Power Laser and Particle Beams, 2022, 34: 031022. doi: 10.11884/HPLPB202234.210214

基于可编程逻辑阵列的速调管预失真模型

doi: 10.11884/HPLPB202234.210214
基金项目: 国家自然科学基金项目(11675170,11805204);“双一流”重点建设项目(YD2030000603)
详细信息
    作者简介:

    谢春杰,xcjnsrl@mail.ustc.edu.cn

    通讯作者:

    周泽然,zhouzr@ustc.edu.cn

  • 中图分类号: TL503.2

Predistortion model of klystron based on Field Programmable Gate Array (FPGA)

  • 摘要: 合肥红外自由电子激光(IR-FEL)是一个工作在中红外和远红外波段的自由电子激光装置,为达到其设计指标,需要使用低电平系统(LLRF)对加速腔内加速场的幅度和相位进行监测和控制。但是速调管的输入输出非线性特性,使得近饱和区控制增益降低,导致了反馈效率的降低。设计了基于可编程逻辑阵列(FPGA)的预失真模型对速调管的幅度非线性特性进行修正,并且对2048节点直接查找表算法和32节点线性插值查找表算法进行了比较和在线实验。比较结果显示,在准确度满足要求情况下,直接查找表算法比线性插值查找表算法延迟减少25%,并且资源消耗量要少于线性插值查找表算法。采用基于直接查找表算法的预失真模块在东芝E3729型号速调管上进行了反馈效率的比较,添加预失真模块后反馈效率提高了43%。
  • 图  1  合肥红外自由电子激装置直线加速器布局图

    Figure  1.  Layout of the linear accelerator of Hefei Infrared Free Electron Laser (IR-FEL)

    图  3  预失真算法原理

    Figure  3.  Principle of predistortion algorithm

    图  4  低电平控制模块简要原理图

    Figure  4.  Simplified schematic of the LLRF controller board

    图  2  速调管输入输出幅度特性曲线

    Figure  2.  Input-to-output characteristic of the amplitude of the klystron

    图  5  基于查找表的预失真算法流程图

    Figure  5.  Schematic of the lookup-table-based klystron predistortion

    图  6  速调管实际输入输出曲线与基于2048节点直接查找表算法和基于32节点的线性插值的查找表算法的误差仿真

    Figure  6.  Simulation of error between actual input and output curves of klystron and 2048-node direct lookup-table algorithm and 32-node lookup-table with linear interpolation algorithm

    图  7  216 kV下速调管预失真前后的输入输出幅度曲线

    Figure  7.  Input to output amplitude curve of klystron (216 kV) before and after predistortion

    图  8  使用与未使用预失真算法时幅度反馈效率比较

    Figure  8.  Comparison of feedback efficiency with linearization and without linearization

    表  1  FPGA实现结果

    Table  1.   Results of FPGA implementation

    algorithm Lin[clk.cyc] logic elements error
    LUT slice sum
    direct lookup-table 5 881 385 1266 7.40%
    lookup-table with linear interpolation 7 940 500 1440 7.20%
    Note: Lin is namber of clocks consumed by different algorithms.
    下载: 导出CSV
  • [1] Li Heting, Jia Qika, Zhang Caishan, et al. Design of FELiChEM, the first infrared free-electron laser user facility in China[J]. Chinese Physics C, 2017, 41: 018102. doi: 10.1088/1674-1137/41/1/018102
    [2] 李和廷, 何志刚, 吴芳芳, 等. 合肥红外自由电子激光装置[J]. 中国激光, 2021, 48:1700001. (Li Heting, He Zhigang, Wu Fangfang, et al. Infrared free electron laser device of Hefei[J]. Chinese Journal of Lasers, 2021, 48: 1700001
    [3] Omet M, Michizono S, Matsumoto T, et al. FPGA-based klystron linearization implementations in scope of ILC[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 768: 69-76.
    [4] Rapp C. Effects of HPA-nonlinearity on a 4-DPSK/OFDM-signal for a digital sound broadcasting signal[C]//European Conference on Satellite Communications. 1991: 179‒184.
    [5] Katz A. Linearization: reducing distortion in power amplifiers[J]. Microwave Magazine IEEE, 2001, 2(4): 37-49. doi: 10.1109/6668.969934
    [6] 孙思思, 张俊强, 李林, 等. SXFEL装置上速调管输入输出特性曲线的线性化[J]. 核技术, 2017, 40(6):9-15. (Sun Sisi, Zhang Junqiang, Li Lin, et al. Linearization of input/output characteristic curves of klystron on SXFEL device[J]. Nuclear Technology, 2017, 40(6): 9-15
    [7] 任天祺, 唐雷雷, 周泽然. 基于MTCA的HLS-II直线加速器低电平系统改造[J]强激光与粒子束, 2020, 32: 084006

    Ren Tianqi, Tang Leilei, Zhou Zeran. Upgrade of low level RF system based on micro telecom computing architecture(MTCA) for HLS-II LINAC[J]. High Power Laser and Particle Beams, 2020, 32: 084006
    [8] Wood J, Root D E . Fundamentals of nonlinear behavioral modeling for RF and microwave design[M]. Norwood: Artech House, 2005.
    [9] Zeng R, Mcginnis D, Molloy S, et al. Control performance improvement by using feedforward in LLRF[C]//Proceedings of IPAC. 2012.
    [10] Omet M , Michizono S Matsumoto T et al. Development and test of klystron linearization packages for FPGA-based low level RF control systems of ILC-like electron accelerators[C]//IEEE Real Time Conference. 2015.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1346
  • HTML全文浏览量:  410
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-31
  • 修回日期:  2021-10-19
  • 网络出版日期:  2021-10-14
  • 刊出日期:  2022-01-13

目录

    /

    返回文章
    返回