留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中物院1~4.2 THz FEL装置波导谐振腔优化设计

窦玉焕 束小建 吴岱 徐勇 杨兴繁 黎明

窦玉焕, 束小建, 吴岱, 等. 中物院1~4.2 THz FEL装置波导谐振腔优化设计[J]. 强激光与粒子束, 2022, 34: 031013. doi: 10.11884/HPLPB202234.210270
引用本文: 窦玉焕, 束小建, 吴岱, 等. 中物院1~4.2 THz FEL装置波导谐振腔优化设计[J]. 强激光与粒子束, 2022, 34: 031013. doi: 10.11884/HPLPB202234.210270
Dou Yuhuan, Shu Xiaojian, Wu Dai, et al. Waveguide optical resonator optimization of CAEP THz-FEL in 1−4.2 THz[J]. High Power Laser and Particle Beams, 2022, 34: 031013. doi: 10.11884/HPLPB202234.210270
Citation: Dou Yuhuan, Shu Xiaojian, Wu Dai, et al. Waveguide optical resonator optimization of CAEP THz-FEL in 1−4.2 THz[J]. High Power Laser and Particle Beams, 2022, 34: 031013. doi: 10.11884/HPLPB202234.210270

中物院1~4.2 THz FEL装置波导谐振腔优化设计

doi: 10.11884/HPLPB202234.210270
基金项目: 中国工程物理研究院基金项目(2015B0402091);北京应用物理与计算数学研究所所长基金项目(ZYSZ1518-09);国家重大科学仪器设备开发和应用专项基金项目(2011YQ1300180102)
详细信息
    作者简介:

    窦玉焕,dou_yuhuan@163.com

    通讯作者:

    吴 岱, wudai04@163.com

  • 中图分类号: TN248.6

Waveguide optical resonator optimization of CAEP THz-FEL in 1−4.2 THz

  • 摘要: 针对中物院高功率太赫兹自由电子激光(THz FEL)装置,结合FEL光腔振荡器实验的实际情况,提出了全波导近共心谐振腔设计方案。完成了THz波段波导光腔对光腔品质影响的理论分析和模拟计算,确定了波导设计尺寸为14 mm和22 mm。同时针对最初实验调试过程中无法出光饱和的问题,提出将波导更换为22 mm大尺寸波导的建议,波导更换后很快在2.56 THz获得饱和出光。另外针对实验频段无法覆盖到1~2 THz的问题,我们通过波导内壁粗糙度进行分析判断,提出采用14 mm铜材质的全波导FEL振荡器的设计方案,采用该方案后,实验成功将辐射频段拓展到0.7~4.2 THz,获得饱和输出。
  • 图  1  辐射频率分别为(a) 1 THz,(b) 2 THz,(c) 3 THz时不同波导尺寸对腔内功率影响的模拟计算结果

    Figure  1.  Curve of power in the optical cavities (Pin) to the waveguide gap 22 mm and 14 mm in 1 THz vs pass

    图  2  (a)趋肤深度随频率和材料电导率的变化 (b) 铜的粗糙度引起的修正电导率

    Figure  2.  (a) skin depth changes with frequency and conductivity and (b) corrected conductivity vs roughness of copper surface

    表  1  中物院 THz FEL装置的主要设计参数

    Table  1.   Parameters of CAEP’s THz free-electron laser(FEL)

    electron beamwiggler
    energy /MeV7period /cm3.8
    peak current /A12.5peak field strength /kG3.3
    micro bunch/ps8number of periods42
    emittance/(πmm·mrad)10optical cavity
    energy spread /%0.75(FWHM)cavity length /m2.769
    repetition rate/MHz54.17 curvature radius/cm221
    下载: 导出CSV
  • [1] Tonouchi M. Cutting-edge Terahertz technology[J]. Nature Photonics, 2007, 1(2): 97-105. doi: 10.1038/nphoton.2007.3
    [2] Scalari G, Walther C, Faist J, et al. Electrically switchable, two-color quantum cascade laser emitting at 1.39 and 2.3 THz[J]. Applied Physics Letters, 2006, 88: 141102. doi: 10.1063/1.2191407
    [3] Bratman V, Glyavin M, Idehara T, et al. Review of subterahertz and terahertz gyrodevices at IAP RAS and FIR FU[J]. IEEE Transactions on Plasma Science, 2009, 37(1): 36-43. doi: 10.1109/TPS.2008.2004787
    [4] Zhang Baolong, Ma Zhenzhe, Ma Jinglong, et al. 1.4-mJ high energy terahertz radiation from lithium niobates[J]. Laser & Photonics Reviews, 2021, 15: 2000295.
    [5] Chiu Y C, Huang Y C, Wang T D, et al. Generation of 4 THz radiation from lithium-niobate off-axis THz parametric oscillator[C]//Proceedings of the 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz2018). 2018.
    [6] 杨晶, 赵佳宇, 郭兰军, 等. 超快激光成丝产生太赫兹波的研究[J]. 红外与激光工程, 2015, 44(3):996-1007. (Yang Jing, Zhao Jiayu, Guo Lanjun, et al. Study of terahertz radiation from filamentation induced by ultrafast laser pulses[J]. Infrared and Laser Engineering, 2015, 44(3): 996-1007 doi: 10.3969/j.issn.1007-2276.2015.03.039
    [7] Williams G P. FAR-IR/THz radiation from the Jefferson Laboratory, energy recovered linac, free electron laser[J]. Review of Scientific Instruments, 2002, 73(3): 1461-1463. doi: 10.1063/1.1420758
    [8] Tecimer M, Holldack K, Elias L R. Dynamically tunable mirrors for THz free electron laser applications[J]. Physical Review Special Topics - Accelerators and Beams, 2010, 13: 030703. doi: 10.1103/PhysRevSTAB.13.030703
    [9] Gavrilov N G, Knyazev B A, Kolobanov E I, et al. Status of the Novosibirsk high-power terahertz FEL[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 575(1/2): 54-57.
    [10] Jongma R T, Van Der Zande W J, Van Der Meer A F G, et al. Design of the Nijmegen high-resolution THz-FEL[C]//Proceedings of the 30th International Free Electron Laser Conference, FEL 2008. Gyeongju, Korea, 2008: 200-203.
    [11] Tecimer M, Brunel L C, Van Tol J. A design study of a FIR/THz FEL for high magnetic field research[C]//Proceedings of FEL 2006, BESSY. Berlin, Germany, 2006: 327-330.
    [12] Militsyn B L, von Helden G, Meijer G J M, et al. FELICE—the free electron laser for intra-cavity experiment[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 507(1/2): 494-497.
    [13] Klopf J M, Helm M, Kehr S C, et al. FELBE-upgrades and status of the IRlTHz FEL user facility at HZDR[C]//Proceedings of the 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz2018). 2018.
    [14] 窦玉焕, 束小建, 王元璋. 远红外自由电子激光光腔改进的模拟分析[J]. 强激光与粒子束, 2006, 18(8):1345-1348. (Dou Yuhuan, Shu Xiaojian, Wang Yuanzhang. Analysis and simulation of optical cavity in CAEP far-infrared FEL[J]. High Power Laser and Particle Beams, 2006, 18(8): 1345-1348
    [15] 窦玉焕, 束小建, 邓德荣, 等. 中物院高功率THz FEL装置的理论分析和优化设计[J]. 强激光与粒子束, 2013, 25(3):662-666. (Dou Yuhuan, Shu Xiaojian, Deng Derong, et al. Design and simulations of CAEP high power THz free-electron laser[J]. High Power Laser and Particle Beams, 2013, 25(3): 662-666 doi: 10.3788/HPLPB20132503.0662
    [16] 窦玉焕, 束小建. THz自由电子激光椭圆型耦合输出光腔[J]. 强激光与粒子束, 2013, 25(6):1455-1459. (Dou Yuhuan, Shu Xiaojian. Elliptical hole-coupling optical resonator in THz FEL[J]. High Power Laser and Particle Beams, 2013, 25(6): 1455-1459 doi: 10.3788/HPLPB20132506.1455
    [17] 窦玉焕, 束小建, 徐勇, 等. 中物院高功率THz FEL装置波导的物理设计[J]. 太赫兹科学与电子信息学报, 2017, 15(5):702-706. (Dou Yuhuan, Shu Xiaojian, Xu Yong, et al. Effect investigation of waveguide for CAEP high power THz FEL[J]. Journal of Terahertz Science and Electronic Information Technology, 2017, 15(5): 702-706 doi: 10.11805/TKYDA201705.0702
    [18] Dou Y H, Shu X J, Wang Y Z. 3D-simulations of transverse optical modes of the free electron laser resonator with hole output coupling[J]. Communications in Computational Physics, 2006, 1(5): 920-929.
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  1072
  • HTML全文浏览量:  335
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-12
  • 修回日期:  2021-11-05
  • 网络出版日期:  2021-11-15
  • 刊出日期:  2022-01-13

目录

    /

    返回文章
    返回