留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脉冲激光烧蚀推进技术的航天应用进展

洪延姬 毛晨涛 冯孝辉

洪延姬, 毛晨涛, 冯孝辉. 脉冲激光烧蚀推进技术的航天应用进展[J]. 强激光与粒子束, 2022, 34: 011002. doi: 10.11884/HPLPB202234.210275
引用本文: 洪延姬, 毛晨涛, 冯孝辉. 脉冲激光烧蚀推进技术的航天应用进展[J]. 强激光与粒子束, 2022, 34: 011002. doi: 10.11884/HPLPB202234.210275
Hong Yanji, Mao Chentao, Feng Xiaohui. Status and progress of pulsed laser ablation propulsion technology in the field of aerospace[J]. High Power Laser and Particle Beams, 2022, 34: 011002. doi: 10.11884/HPLPB202234.210275
Citation: Hong Yanji, Mao Chentao, Feng Xiaohui. Status and progress of pulsed laser ablation propulsion technology in the field of aerospace[J]. High Power Laser and Particle Beams, 2022, 34: 011002. doi: 10.11884/HPLPB202234.210275

脉冲激光烧蚀推进技术的航天应用进展

doi: 10.11884/HPLPB202234.210275
基金项目: 国家自然科学基金项目(10672184)
详细信息
    作者简介:

    洪延姬,hongyanji@vip.sina.com

  • 中图分类号: TN249

Status and progress of pulsed laser ablation propulsion technology in the field of aerospace

  • 摘要: 脉冲激光烧蚀推进技术具有比冲高和推力可精确控制的特点,既可用于发射有效载荷也可用于星载动力,甚至可用小行星表面物质作为推进剂使其偏转轨道,因此,在航天领域得到越来越多关注。围绕激光单级入轨发射、同步轨道和火星轨道运输;激光微推力器用于航天器姿轨控,以及激光与电组合推进;激光烧蚀操控cm级空间碎片的轨道,以及激光烧蚀操控较大尺寸碎片的姿态;激光烧蚀偏转小行星轨道等方面,对脉冲激光烧蚀推进技术在航天领域研究现状和进展,进行了系统全面地归纳和总结,并对激光平均功率、波长、脉宽和推进剂选材等关键问题,进行了详细分析。
  • 图  1  激光烧蚀靶材示意图

    Figure  1.  Laser ablation impulse generation

    图  2  抛物面聚焦装置示意图

    Figure  2.  Schematic diagram of the parabolic reflector

    图  3  光船飞行器示意图

    Figure  3.  Schematic diagram of the lightcraft vehicle

    图  4  航天激光推进发动机

    Figure  4.  The aerospace laser propulsion engine

    图  5  激光烧蚀推进的球形飞行器

    Figure  5.  Laser ablation propelled spherical flyer

    图  6  单级入轨发射

    Figure  6.  Single stage to orbit launch vehicle

    图  7  由近地轨道通过霍曼变轨进入火星轨道

    Figure  7.  Launch a flyer from LEO into a Hohmann transfer orbit touching Mars

    图  8  由近地轨道通过霍曼变轨进入同步轨道

    Figure  8.  Progressive orbits to GEO or interplanetary flight

    图  9  纳秒和毫秒脉宽激光微推力器的工作原理

    Figure  9.  Operating principles of the nanosecond and millisecond versions of the laser plasma thrusters

    图  10  气体、液体和固体推进剂等激光推进模式

    Figure  10.  Laser ablation propulsion of gas, liquid and solid propellant

    图  11  激光与静电组合微推力器

    Figure  11.  Laser-electrostatic hybrid thruster

    图  12  激光与电磁组合的同轴型微推力器

    Figure  12.  Cylindrical laser electromagnetic hybrid thruster

    图  13  激光与电磁组合的平板型微推力器

    Figure  13.  Rectangular laser electromagnetic hybrid thruster

    图  14  远距离、大光斑、全覆盖激光操控方式

    Figure  14.  Laser ablation manipulation model of focusing a laser beam to irradiate whole body of debris

    图  15  近距离、小光斑、点覆盖激光操控方式

    Figure  15.  Laser ablation manipulation model of focusing a laser beam to irradiate a point of debris’ surface

    图  16  碎片同面圆轨道、反向、迎面飞行时轨道参数的变化

    Figure  16.  Change of orbit parameters of circular orbital reverse flying debris

    图  17  碎片异面圆轨道、反向、迎面飞行时半长轴的变化

    Figure  17.  Change of semi-major axis of non-coplanar circular orbital reverse flying debris

    图  18  碎片异面圆轨道、反向、迎面飞行时偏心率的变化

    Figure  18.  Change of eccentricity of non-coplanar circular orbital reverse flying debris

    图  19  碎片异面圆轨道、反向、迎面飞行时轨道倾角的变化

    Figure  19.  Change of inclination of non-coplanar circular orbital reverse flying debris

    图  20  碎片异面圆轨道、反向、迎面飞行、激光烧蚀力重复作用下矢径的变化

    Figure  20.  Change of position vector’s modulus of non-coplanar circular orbital reverse flying debris with repetitive pulsed laser

    图  21  碎片异面圆轨道、反向、迎面飞行、激光烧蚀力重复作用下倾角和升交点赤经的变化

    Figure  21.  Change of inclination and right ascension of the ascending node of non-coplanar circular orbital reverse flying debris with repetitive pulsed laser

    图  22  碎片尺寸为40 cm/50 cm/60 cm下碎片角速度${\omega _{x{\rm{b}}}}$的变化

    Figure  22.  Change of angular velocity ${\omega _{x{\rm{b}}}}$ of debris in volume 40 cm×50 cm×60 cm

    图  23  碎片尺寸为40 cm/50 cm/60 cm下碎片角速度${\omega _{y{\rm{b}}}}$的变化

    Figure  23.  Change of angular velocity ${\omega _{y{\rm{b}}}}$ of debris in volume 40 cm×50 cm×60 cm

    图  24  碎片尺寸为40 cm/50 cm/60 cm下碎片角速度${\omega _{{\textit{z}} {\rm{b}}}}$的变化

    Figure  24.  Change of angular velocity ${\omega _{{\textit{z}} {\rm{b}}}}$ of debris in volume 40 cm×50 cm×60 cm

    图  25  碎片尺寸为40 cm/50 cm/60 cm下激光烧蚀消旋阶段

    Figure  25.  Process of laser ablation despinning of debris in volume 40 cm×50 cm×60 cm

    图  26  激光烧蚀小行星和“激光蜂群计划”

    Figure  26.  Asteroid laser ablation manipulation and the Laser Bees Project

    表  1  推进剂材料和冲量耦合系数

    Table  1.   Propellant material and coupling coefficient

    pulse width/fscoupling coefficient/(N·MW−1energy fluence/(kJ·m−2
    AlPOMAlPOM
    40030±5125±1250±1032±6
    8028±5773±7030±640±8
    下载: 导出CSV

    表  2  激光和靶材参数

    Table  2.   Laser and target parameters

    launch
    orbit
    typewavelength/nmpulse
    duration/ps
    pulse
    energy/kJ
    pulse repetition
    rate/Hz
    laser average
    power/MW
    mirror
    diameter/m
    coupling coefficient/
    (N/MW)
    single stage to orbit Nd:YAG 1057 100 5 1000~3000 5~15 6 100~150
    from LEO into Mars orbit Nd:YAG 355 100 5 250 1.25 3 70
    下载: 导出CSV
  • [1] Kantrowitz A. Propulsion to orbit by ground-based lasers[J]. Astronautics and Aeronautics, 1972, 10(5): 74-76.
    [2] Pirri A N, Weiss R F. Laser propulsion[C]//AIAA 5th Fluid and Plasma Dynamics Conference. Boston: AIAA, 1972.
    [3] Phipps C, Birkan M, Bohn W, et al. Review: laser-ablation propulsion[J]. Journal of Propulsion and Power, 2010, 26(4): 609-637. doi: 10.2514/1.43733
    [4] 张楠, 徐智君, 朱晓农, 等. 激光推进技术[J]. 红外与激光工程, 2011, 40(6):1025-1037. (Zhang Nan, Xu Zhijun, Zhu Xiaonong, et al. Laser propulsion technology[J]. Infrared and Laser Engineering, 2011, 40(6): 1025-1037 doi: 10.3969/j.issn.1007-2276.2011.06.009
    [5] 谭胜, 吴建军, 张宇, 等. 激光支持的空间微推进技术研究进展[J]. 推进技术, 2018, 39(11):2415-2428. (Tan Sheng, Wu Jianjun, Zhang Yu, et al. Research progress of laser-supported space micropropulsion technology[J]. Journal of Propulsion Technology, 2018, 39(11): 2415-2428
    [6] 洪延姬, 金星, 李小将, 等. 临近空间飞行器技术[M]. 北京: 国防工业出版社, 2012.

    Hong Yanji, Jin Xing, Li Xiaojiang, et al. Near space vehicle technology[M]. Beijing: National Defense Industry Press, 2012
    [7] 洪延姬, 李倩, 王殿恺, 等. 超声速飞行器的激光空气锥减阻方法[M]. 北京: 科学出版社, 2016.

    Hong Yanji, Li Qian, Wang Diankai, et al. Laser air cone drag reduction method for supersonic aircraft[M]. Beijing: Science Press, 2016
    [8] 洪延姬, 金星, 崔村燕, 等. 先进航天推进技术[M]. 北京: 国防工业出版社, 2012.

    Hong Yanji, Jin Xing, Cui Cunyan, et al. Advanced space propulsion technology[M]. Beijing: National Defense Industry Press, 2012
    [9] 洪延姬, 金星, 李倩, 等. 吸气式脉冲激光推进导论[M]. 北京: 国防工业出版社, 2012.

    Hong Yanji, Jin Xing, Li Qian, et al. Introduction to inspiratory pulsed laser propulsion[M]. Beijing: National Defense Industry Press, 2012
    [10] Myrabo L N, Messitt D G, Mead F B Jr. Ground and flight tests of a laser propelled vehicle[C]//36th AIAA Aerospace Sciences Meeting & Exhibit. Reno, NV: AIAA, 1998.
    [11] Phipps C, Bonnal C, Masson F, et al. Launching swarms of microsatellites using a 100 kW average power pulsed laser[J]. Journal of the Optical Society of America B, 2018, 35(10): B20-B26. doi: 10.1364/JOSAB.35.000B20
    [12] Phipps C R, Bonnal C, Masson F, et al. Transfers from Earth to LEO and LEO to interplanetary space using lasers[J]. Acta Astronautica, 2018, 146: 92-102. doi: 10.1016/j.actaastro.2018.02.018
    [13] Phipps C R, Boustie M, Chevalier J M, et al. Laser impulse coupling measurements at 400 fs and 80 ps using the LULI facility at 1057 nm wavelength[J]. Journal of Applied Physics, 2017, 122: 193103. doi: 10.1063/1.4997196
    [14] Phipps C R, Reilly J P, Campbell J W. Optimum parameters for laser launching objects into low earth orbit[J]. Laser and Particle Beams, 2000, 18(4): 661-695. doi: 10.1017/S0263034600184101
    [15] Phipps C R, Luke J R, Helgeson W, et al. Performance test results for the laser-powered microthruster[J]. AIP Conference Proceedings, 2006, 830(1): 224-234.
    [16] Phipps C R, Luke J R, Helgeson W, et al. A ns-pulse laser microthruster[J]. AIP Conference Proceedings, 2006, 830(1): 235-246.
    [17] Horisawa H, Igari A, Kawakami M, et al. Discharge characteristics of laser-electric hybrid thrusters[C]//40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 2004.
    [18] Horisawa H, Kawakami M, Kimura I, et al. Laser-assisted pulsed plasma thruster for space propulsion applications[J]. Applied Physics A, 2005, 81(2): 303-310. doi: 10.1007/s00339-005-3210-8
    [19] Ono T, Uchida Y, Horisawa H, et al. Measurement of ion acceleration characteristics of a laser-electrostatic hybrid microthruster for space propulsion applications[J]. Vacuum, 2008, 83(1): 213-216. doi: 10.1016/j.vacuum.2008.03.098
    [20] Osamura A, Sakai T, Horisawa H. Development of a laser-electrostatic hybrid acceleration thruster[C]//50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Cleveland, OH: AIAA, 2014.
    [21] Horisawa H, Sasaki Y, Funaki I, et al. Electromagnetic acceleration characteristics for a laser-electric hybrid thruster[C]//44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Hartford: AIAA, 2008.
    [22] Horisawa H, Mashima Y, Yamada O, et al. High ISP mechanism of rectangular laser-electromagnetic hybrid acceleration thruster[C]//32nd International Electric Propulsion Conference. Wiesbaden, 2011.
    [23] Akashi N, Oigawa Y, Hosokawa H, et al. Plasma acceleration characteristic of a rectangular laser-electromagnetic hybrid thruster[C]//50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Cleveland, OH: AIAA, 2014.
    [24] Phipps C R, Albrecht G, Friedman H, et al. ORION: clearing near-earth space debris using a 20-kW, 530-nm, earth-based, repetitively pulsed laser[J]. Laser and Particle Beams, 1996, 14(1): 1-44. doi: 10.1017/S0263034600009733
    [25] Phipps C R, Baker K L, Libby S B, et al. Removing orbital debris with lasers[J]. Advances in Space Research, 2012, 49(9): 1283-1300. doi: 10.1016/j.asr.2012.02.003
    [26] Campbell J W. Project ORION: orbital debris removal using ground-based sensors and lasers[R]. Washington: NASA, 1996.
    [27] Phipps C, Reilly P. ORION: clearing near-earth space debris in two years using a 30 kW repetitively pulsed laser[C]//Proceedings of SPIE 3092, XI International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference. 1997: 728-731.
    [28] Schall W O. Laser radiation for cleaning space debris from lower earth orbit[J]. Journal of Spacecraft and Rocket, 2002, 39(1): 81-91. doi: 10.2514/2.3785
    [29] 路勇, 刘晓光, 周宇, 等. 空间翻滚非合作目标消旋技术发展综述[J]. 航空学报, 2018, 39:021302. (Lu Yong, Liu Xiaoguang, Zhou Yu, et al. Review of detumbling technologies for active removal of uncooperative targets[J]. Acta Aeronauticaet Astronautica Sinica, 2018, 39: 021302
    [30] Kumar R, Sedwick R J. Despinning orbital debris before docking using laser ablation[J]. Journal of Spacecraft and Rocket, 2015, 52(4): 1129-1134. doi: 10.2514/1.A33183
    [31] 洪延姬, 金星, 王广宇, 等. 激光清除空间碎片方法[M]. 北京: 国防工业出版社, 2013.

    Hong Yanji, Jin Xing, Wang Guangyu, et al. Laser method for removing space debris[M]. Beijing: National Defense Industry Press, 2013
    [32] 洪延姬, 金星, 叶继飞, 等. 天基激光烧蚀操控空间碎片方法[M]. 北京: 科学出版社, 2020.

    Hong Yanji, Jin Xing, Ye Jifei, et al. Space-based laser ablation method for manipulating space debris[M]. Beijing: Science Press, 2016
    [33] Vasile M, Gibbings A, Watson I, et al. Improved laser ablation model for asteroid deflection[J]. Acta Astronautica, 2014, 103: 382-394. doi: 10.1016/j.actaastro.2014.01.033
    [34] Phipps C. Can lasers play a rôle in planetary defense?[J]. AIP Conference Proceedings, 2010, 1278(1): 502-508.
    [35] Vasile M, Maddock C A. Design of a formation of solar pumped lasers for asteroid deflection[J]. Advances in Space Research, 2012, 50(7): 891-905. doi: 10.1016/j.asr.2012.06.001
    [36] Maddock C, Vasile M, Summerer L. Conceptual design of a multi-mirror system for asteroid deflection[C]//27th International Symposium on Space Technology and Science. 2009: 1-5.
    [37] Gibbings A, Vasile M, Watson I, et al. Experimental analysis of laser ablated plumes for asteroid deflection and exploitation[J]. Acta Astronautica, 2013, 90(1): 85-97. doi: 10.1016/j.actaastro.2012.07.008
    [38] Zhang Qicheng, Walsh K J, Melis C, et al. Orbital simulations for directed energy deflection of near-earth asteroids[J]. Procedia Engineering, 2015, 103: 671-678. doi: 10.1016/j.proeng.2015.04.087
    [39] Thiry N, Vasile M. Recent advances in laser ablation modelling for asteroid deflection methods[C]//Proceedings of SPIE 9226, Nanophotonics and Macrophotonics for Space Environments VIII. 2014: 922608.
    [40] Vasile M, Nicolas T. LightTouch3: a demo mission to test laser ablation for asteroid manipulation and exploitation[C]//15th Reinventing Space Conference. Glasgow, UK, 2017.
    [41] Sloane J B, Sedwick R J. Direct force measurement of pulsed laser ablation of asteroid simulants[J]. Journal of Propulsion and Power, 2020, 36(4): 551-559. doi: 10.2514/1.B37566
  • 加载中
图(26) / 表(2)
计量
  • 文章访问数:  1435
  • HTML全文浏览量:  840
  • PDF下载量:  182
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-12
  • 修回日期:  2021-09-22
  • 网络出版日期:  2021-09-16
  • 刊出日期:  2022-01-15

目录

    /

    返回文章
    返回