留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高稳定激光脉冲波形精密调控技术研究与应用

宗兆玉 赵军普 李森 梁樾 姚轲 田小程 黄小霞 陈波 郑万国

宗兆玉, 赵军普, 李森, 等. 高稳定激光脉冲波形精密调控技术研究与应用[J]. 强激光与粒子束, 2022, 34: 031011. doi: 10.11884/HPLPB202234.210288
引用本文: 宗兆玉, 赵军普, 李森, 等. 高稳定激光脉冲波形精密调控技术研究与应用[J]. 强激光与粒子束, 2022, 34: 031011. doi: 10.11884/HPLPB202234.210288
Zong Zhaoyu, Zhao Junpu, Li Sen, et al. Precise laser pulse shaping technology and application with high energy stability[J]. High Power Laser and Particle Beams, 2022, 34: 031011. doi: 10.11884/HPLPB202234.210288
Citation: Zong Zhaoyu, Zhao Junpu, Li Sen, et al. Precise laser pulse shaping technology and application with high energy stability[J]. High Power Laser and Particle Beams, 2022, 34: 031011. doi: 10.11884/HPLPB202234.210288

高稳定激光脉冲波形精密调控技术研究与应用

doi: 10.11884/HPLPB202234.210288
基金项目: 国家自然科学基金项目(62075201,61805223)
详细信息
    作者简介:

    宗兆玉,zongzhaoyu1st@163.com

    通讯作者:

    郑万国,wgzheng_caep@sina.com

  • 中图分类号: TN248

Precise laser pulse shaping technology and application with high energy stability

  • 摘要: 提出了基于激光脉冲波形精密调控和能量稳定性控制的双回路同步闭环设计方法,进而在任意波形发生器与预放大系统输出处建立脉冲波形闭环控制系统,在保偏大模场光纤放大器和再生放大器间建立能量稳定性闭环系统。依托大口径高通量实验平台,实现了激光脉冲波形的快速高稳定精密调控,脉冲波形闭环精度优于2%(RMS),脉冲能量稳定性优于5%(PV)。该技术成功应用到物理实验正式发射中,常规整形脉冲波形的功率准确度优于2%,相关结果有力支撑了ICF激光驱动器激光参数精密调控设计。
  • 图  1  预放大系统的非线性时域响应特性

    Figure  1.  Nonlinear temporal response function of preamplifier system

    图  2  再生放大器的不同工作状态对预放大系统输出的影响

    Figure  2.  Dependence of regenerative amplifier state on output of preamplifier system

    图  3  脉冲波形精密调控闭环设计的原理示意图

    Figure  3.  Schematic of laser pulse precise shaping closed-loop feedback system

    图  4  激光脉冲能量稳定性闭环控制原理示意图

    Figure  4.  Schematic of laser pulse energy closed-loop control system

    图  5  激光脉冲波形的闭环过程

    Figure  5.  Closed-loop iterative process of laser shaping pulse

    图  6  激光脉冲波形的闭环调控结果

    Figure  6.  Closed-loop result of laser shaping pulses

    图  7  整形激光脉冲的能量稳定性

    Figure  7.  Energy stability result of laser shaping pulse

    图  8  物理实验正式发射测量的实际脉冲波形

    Figure  8.  Laser shaping pulses applied to physical experiments

  • [1] Zhang F, Cai H B, Zhou W M, et al. Enhanced energy coupling for indirect-drive fast-ignition fusion targets[J]. Nature Physics, 2020, 16(7): 810-814. doi: 10.1038/s41567-020-0878-9
    [2] Gopalaswamy V, Betti R, Knauer J P, et al. Tripled yield in direct-drive laser fusion through statistical modelling[J]. Nature, 2019, 565(7741): 581-586. doi: 10.1038/s41586-019-0877-0
    [3] Jing Longfei, Jiang Shaoen, Kuang Longyu, et al. Comparison of three hohlraum configurations with six laser entrance holes for indirect-drive inertial confinement fusion[J]. Nuclear Fusion, 2018, 58: 096017. doi: 10.1088/1741-4326/aacec8
    [4] Betti R, Hurricane O A. Inertial-confinement fusion with lasers[J]. Nature Physics, 2016, 12(5): 435-448. doi: 10.1038/nphys3736
    [5] 郑万国, 李平, 张锐, 等. 高功率激光装置光束精密调控性能研究进展[J]. 强激光与粒子束, 2020, 32:011003. (Zheng Wanguo, Li Ping, Zhang Rui, et al. Progress on laser precise control for high power laser facility[J]. High Power Laser and Particle Beams, 2020, 32: 011003 doi: 10.11884/HPLPB202032.190469
    [6] Zheng Wanguo, Wei Xiaofeng, Zhu Qihua, et al. Laser performance upgrade for precise ICF experiment in SG-Ⅲ laser facility[J]. Matter and Radiation at Extremes, 2017, 2(5): 243-255. doi: 10.1016/j.mre.2017.07.004
    [7] Spaeth M L, Manes K R, Kalantar D H, et al. Description of the NIF Laser[J]. Fusion Science and Technology, 2016, 69(1): 25-145. doi: 10.13182/FST15-144
    [8] 宗兆玉, 许党朋, 田小程, 等. 高精度整形激光脉冲产生技术研究[J]. 中国激光, 2017, 44:0105001. (Zong Zhaoyu, Xu Dangpeng, Tian Xiaocheng, et al. Laser pulse generation technology with high adjustment precision[J]. Chinese Journal of Lasers, 2017, 44: 0105001 doi: 10.3788/CJL201744.0105001
    [9] Fan Wei, Jiang Youen, Wang Jiangfeng, et al. Progress of the injection laser system of SG-II[J]. High Power Laser Science and Engineering, 2018, 6: e34. doi: 10.1017/hpl.2018.31
    [10] Li Ping, Wang Wei, Jin Sai, et al. The shaped pulses control and operation on the SG-III prototype facility[J]. Laser Physics, 2018, 28: 045004. doi: 10.1088/1555-6611/aaa9dc
    [11] 李海, 梁樾, 赵润昌, 等. 高功率激光整形脉冲波形控制技术[J]. 强激光与粒子束, 2011, 23(9):2377-2380. (Li Hai, Liang Yue, Zhao Runchang, et al. Waveform control technique of high power laser pulse shaping[J]. High Power Laser and Particle Beams, 2011, 23(9): 2377-2380 doi: 10.3788/HPLPB20112309.2377
    [12] Guardalben M J, Barczys M, Kruschwitz B E, et al. Laser-system model for enhanced operational performance and flexibility on OMEGA EP[J]. High Power Laser Science and Engineering, 2020, 8: e8. doi: 10.1017/hpl.2020.6
    [13] Shaw M, House R. Laser performance operations model (LPOM): the computational system that automates the setup and performance analysis of the National Ignition Facility[C]//Proceedings of SPIE 9345 High Power Lasers for Fusion Research III. 2015: 93450E.
    [14] Brunton G, Erbert G, Browning D, et al. The shaping of a national ignition campaign pulsed waveform[J]. Fusion Engineering and Design, 2012, 87(12): 1940-1944. doi: 10.1016/j.fusengdes.2012.09.019
    [15] Zhao Junpu, Liang Yue, Li Sen, et al. Beam nonuniformity compensating by the programmable spatial shaper for the integration test bed[C]//Proceedings of the SPIE 11052 Third International Conference on Photonics and Optical Engineering. 2019: 110521R.
    [16] Zhao Junpu, Wang Wenyi, Fu Xuejun, et al. Recent progress of the Integration Test Bed[C]//Proceedings of the SPIE 9266 High-Power Lasers and Applications VII. 2014: 92660X.
    [17] Yao Ke, Gao Song, Tang Jun, et al. Off-axis eight-pass neodymium glass laser amplifier with high efficiency and excellent energy stability[J]. Applied Optics, 2018, 57(29): 8727-8732. doi: 10.1364/AO.57.008727
    [18] Yao Ke, Xie Xudong, Tang Jun, et al. Diode-side-pumped joule-level square-rod Nd: glass amplifier with 1 Hz repetition rate and ultrahigh gain[J]. Optics Express, 2019, 27(23): 32912-32923. doi: 10.1364/OE.27.032912
    [19] Zhang Rui, Tian Xiaocheng, Zhou Dandan, et al. Single-mode millijoule fiber laser system with high pulse shaping ability[J]. Optik, 2018, 157: 1087-1093. doi: 10.1016/j.ijleo.2017.11.198
    [20] Xu Dangpeng, Tian Xiaocheng, Zhou Dandan, et al. Temporal pulse precisely sculpted millijoule-level fiber laser injection system for high-power laser driver[J]. Applied Optics, 2017, 56(10): 2661-2666. doi: 10.1364/AO.56.002661
  • 加载中
图(8)
计量
  • 文章访问数:  1767
  • HTML全文浏览量:  463
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-14
  • 修回日期:  2021-11-09
  • 网络出版日期:  2021-11-17
  • 刊出日期:  2022-01-13

目录

    /

    返回文章
    返回