留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于RMC的微观截面参数化

冯致远 李凯文 骆浩 王侃

冯致远, 李凯文, 骆浩, 等. 基于RMC的微观截面参数化[J]. 强激光与粒子束, 2022, 34: 026006. doi: 10.11884/HPLPB202234.210309
引用本文: 冯致远, 李凯文, 骆浩, 等. 基于RMC的微观截面参数化[J]. 强激光与粒子束, 2022, 34: 026006. doi: 10.11884/HPLPB202234.210309
Feng Zhiyuan, Li Kaiwen, Luo Hao, et al. Micro cross-section parameterization based on RMC code[J]. High Power Laser and Particle Beams, 2022, 34: 026006. doi: 10.11884/HPLPB202234.210309
Citation: Feng Zhiyuan, Li Kaiwen, Luo Hao, et al. Micro cross-section parameterization based on RMC code[J]. High Power Laser and Particle Beams, 2022, 34: 026006. doi: 10.11884/HPLPB202234.210309

基于RMC的微观截面参数化

doi: 10.11884/HPLPB202234.210309
基金项目: 国家自然科学基金项目(11775127);科技部重点研发计划( 2020YFB1901700)
详细信息
    作者简介:

    冯致远,fengzy17@mails.tsinghua.edu.cn

  • 中图分类号: TL32

Micro cross-section parameterization based on RMC code

  • 摘要: 为了进行堆芯计算,需要通过组件计算提前构建少群截面参数库。传统确定论的组件截面参数化方法针对宏观截面进行截面参数化,但这种方式不仅需要考虑多种物理状态参数,而且需要考虑历史效应对截面的影响。提出了基于核素微观截面的蒙卡程序参数化方法,该方法可以消除燃耗历史的影响,且考虑的物理状态仅为燃耗深度以及材料温度。利用蒙卡程序产生组件截面参数库耦合堆芯程序进行堆芯计算,首先用蒙卡程序同时统计对应状态点下的核素密度以及核素少群微观截面,再利用核素微观截面进而获得宏观截面进行后续堆芯计算。为了验证方法正确性,构造了一个自定义的压水堆模型,计算结果与连续能量蒙卡计算结果符合良好。
  • 图  1  Python计算流程图

    Figure  1.  Multi-physical conditions calculation process

    图  2  可燃毒物组件

    Figure  2.  Burnable poison assembly geometry

    图  3  堆芯径向布置图

    Figure  3.  Radial model of core

    图  4  550 K燃耗点数据对比

    Figure  4.  Comparison of multigroup RMC and continues energy RMC under 550 K

    图  5  0.05 MWD/KgHM的功率分布相对偏差

    Figure  5.  Relative difference in radial power distribution under 0.05 MWD/tHM burnup

    图  6  2.5 MWD/KgHM的功率分布相对偏差

    Figure  6.  Relative difference in radial power distribution under 2.5 MWD/tHM burnup

    图  7  11.5 MWD/KgHM的功率分布相对偏差

    Figure  7.  Relative difference in radial power distribution under 11.5 MWD/tHM burnup

    表  1  燃耗设置

    Table  1.   Setting of burnup

    steptime/dayburnup(MWD/kgHM)
    00.000.00
    11.440.05
    22.880.10
    35.760.20
    48.640.30
    514.410.50
    621.610.75
    728.811.00
    843.221.50
    972.032.50
    10100.853.50
    11129.664.50
    12158.475.50
    13187.296.50
    14216.107.50
    15244.918.50
    16273.739.50
    17302.5410.50
    18331.3511.50
    下载: 导出CSV

    表  2  550 K燃耗点keff数据对比

    Table  2.   Comparison of keff of multigroup RMC and continues energy RMC under 550 K

    step RMCContinuous energymulti-grouprelative error /pcm
    01.1798811.178647123.4
    11.1494561.14957511.9
    21.1666611.16565101.1
    31.1655311.164513101.8
    41.1642281.16365257.6
    51.1623471.161281106.6
    61.160691.16016952.1
    71.1590951.157965113
    81.1565141.154763175.1
    91.144951.14442252.8
    101.139641.138056158.4
    111.1353961.13471967.7
    121.1308321.13040942.3
    131.1264721.1263314.2
    141.1221241.12131680.8
    151.1178461.11747337.3
    161.1133751.11288149.4
    171.1086621.109897123.5
    181.1045641.10441115.3
    下载: 导出CSV
  • [1] Weston M. S. Nuclear reactor physics[M]. America: Wiley Interscience, 2001.
    [2] Wang Y, Bangerth W, Ragusa J. Three-dimensional h-adaptivity for the multi-group neutron diffusion equations[J]. Progress in Nuclear Energy, 2009, 51(3): 543-555. doi: 10.1016/j.pnucene.2008.11.005
    [3] Sugimura N, Yamamoto A. Resonance treatment based on ultra-fine-group spectrum calculation in the AEGIS code[J]. Journal of Nuclear Science and Technology, 2007, 44: 958-966. doi: 10.1080/18811248.2007.9711335
    [4] Fridman E, Leppanen J. On the use of the Serpent Monte Carlo code for few-group cross section generation[J]. Annals of Nuclear Energy, 2011, 38(6): 1399-1405. doi: 10.1016/j.anucene.2011.01.032
    [5] Liu Z, Smith K, Forget B, et al. Cumulative migration method for computing rigorous diffusion coefficients and transport cross sections from Monte Carlo[J]. Annals of Nuclear Energy, 2018, 112: 507-516. doi: 10.1016/j.anucene.2017.10.039
    [6] Shim H, Cho Y, Song S, et al. Generation of few group diffusion theory constants by Monte Carlo code[J]. Transactions of the American Nuclear Society, 2008, 172: 66-77.
    [7] Shinzaburo M. MVP/GMVP II: General purpose Monte Carlo codes for neutron and photon transport calculations based on continuous energy and multigroup methods[M]. Japan: Japan Atomic Energy Research Institute, 2005.
    [8] Nikitin E, Fridman E, Mikityuk K. On the use of the SPH method in nodal diffusion analyses of SFR cores[J]. Annals of Nuclear Energy, 2015, 85: 544-551. doi: 10.1016/j.anucene.2015.06.007
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  726
  • HTML全文浏览量:  306
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-22
  • 修回日期:  2021-09-06
  • 网络出版日期:  2021-10-14
  • 刊出日期:  2022-01-11

目录

    /

    返回文章
    返回