留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

国和一号(CAP1400)首循环堆芯启动物理试验高保真模拟分析

彭良辉 杨波 汤春桃 费敬然 毕光文 杨伟焱 沈芷睿 肖维 申靖文 刘鹏 张旻婉

彭良辉, 杨波, 汤春桃, 等. 国和一号(CAP1400)首循环堆芯启动物理试验高保真模拟分析[J]. 强激光与粒子束, 2022, 34: 026002. doi: 10.11884/HPLPB202234.210372
引用本文: 彭良辉, 杨波, 汤春桃, 等. 国和一号(CAP1400)首循环堆芯启动物理试验高保真模拟分析[J]. 强激光与粒子束, 2022, 34: 026002. doi: 10.11884/HPLPB202234.210372
Peng Lianghui, Yang Bo, Tang Chuntao, et al. Zero power physics test high fidelity simulation for first core of Guo He One (CAP1400) reactor[J]. High Power Laser and Particle Beams, 2022, 34: 026002. doi: 10.11884/HPLPB202234.210372
Citation: Peng Lianghui, Yang Bo, Tang Chuntao, et al. Zero power physics test high fidelity simulation for first core of Guo He One (CAP1400) reactor[J]. High Power Laser and Particle Beams, 2022, 34: 026002. doi: 10.11884/HPLPB202234.210372

国和一号(CAP1400)首循环堆芯启动物理试验高保真模拟分析

doi: 10.11884/HPLPB202234.210372
基金项目: 大型先进压水堆及高温气冷堆核电站重大专项资助项目(2019ZX06002017)
详细信息
    作者简介:

    彭良辉,penglianghui@snerdi.com.cn

  • 中图分类号: TL329+.2

Zero power physics test high fidelity simulation for first core of Guo He One (CAP1400) reactor

  • 摘要: 为了避免启动物理试验参数预测值不准确,影响电厂调试启动,可利用数值反应堆对启动物理试验参数进行精准预测。使用CAP1400数值反应堆系统中的蒙特卡罗粒子输运程序JMCT、确定论高保真模拟程序NECP-X及先进中子学程序SCAP-N,对CAP1400反应堆首循环堆芯进行建模,开展启动物理试验高保真模拟。数值结果表明,以JMCT程序为参考,NECP-X程序与SCAP-N程序对于灰棒组价值的绝对计算偏差在±8×10−5以内,对于黑棒组价值的相对计算偏差在±3%以内,对于黑棒总价值的相对计算偏差在±1%以内,对于组件相对功率分布的相对计算偏差在±2.5%以内,各程序计算结果符合得很好,可有效支撑反应堆的调试启动过程。
  • 图  1  CAP1400首循环堆芯装载方案

    Figure  1.  The loading pattern of the CAP1400 first core

    图  2  CAP1400首循环堆芯JMCT程序建模结果

    Figure  2.  The JMCT modeling result of the CAP1400 first core

    图  3  CAP1400首循环堆芯热态零功率控制全提工况组件相对功率分布

    Figure  3.  Assemble relative power of the CAP1400 first core at HZP/ARO condition

    图  4  组件相对功率分布计算偏差统计

    Figure  4.  Distribution of the assemble relative power calculation deviations

    图  5  CAP1400首循环堆芯热态零功率控制全提工况栅元相对功率分布

    Figure  5.  Pin-by-pin relative power of the CAP1400 first core at HZP/ARO condition

    表  1  CAP1400反应堆首循环堆芯启动物理试验参数计算结果

    Table  1.   The ZPPT simulation results of the CAP1400 first core

    itemresult of JMCTerror of NECP-X(1)error of SCAP-N(1)
    critical boron concentration/10−61224.3−23.6×10−6−4.9×10−6
    control bank worth of MA/10−5205.6−5.2×10−5−7.6×10−5
    control bank worth of MB/10−5172.84.0×10−52.8×10−5
    control bank worth of MC/10−5210.90.4×10−5−2.0×10−5
    control bank worth of MD/10−5187.5−4.8×10−5−6.9×10−5
    control bank worth of M1/10−5498.1−0.24%−0.88%
    control bank worth of M2/10−5740.70.68%0.07%
    control bank worth of AO/10−51619.9−0.14%−1.21%
    control bank worth of SD1/10−5785.6−0.87%−1.35%
    control bank worth of SD2/10−5939.2−0.05%−0.31%
    control bank worth of SD3/10−5891.20.39%−0.19%
    control bank worth of SD4/10−5788.5−2.50%−2.79%
    control bank worth of SD5/10−5463.62.14%1.16%
    control bank worth of SD6/10−5249.82.68%1.98%
    total worth of black control banks/10−56976.6−0.08%−0.72%
    Note: critical boron concentration and control bank worth of MA~MD use absolute deviations, while the others use relative deviations.
    下载: 导出CSV
  • [1] 邓力, 史敦福, 李刚. 数值反应堆多物理耦合关键技术[J]. 计算物理, 2016, 33(6):631-638. (Deng Li, Shi Dunfu, Li Gang. Key technologies of coupling for multiphysics in numerical reactor[J]. Chinese Journal of Computational Physics, 2016, 33(6): 631-638 doi: 10.3969/j.issn.1001-246X.2016.06.002
    [2] Turinsky P J, Kothe D B. Modeling and simulation challenges pursued by the Consortium for Advanced Simulation of Light Water Reactors(CASL)[J]. Journal of Computational Physics, 2016, 313: 367-376. doi: 10.1016/j.jcp.2016.02.043
    [3] Leandro A M, Heidet F, Hu R, et al. Thermal hydraulic model of the molten salt reactor experiment with the NEAMS system analysis module[J]. Annals of Nuclear Energy, 2019, 126: 59-67. doi: 10.1016/j.anucene.2018.10.060
    [4] Chanaron B. Overview of the NURESAFE European project[J]. Nuclear Engineering and Design, 2017, 321: 1-7. doi: 10.1016/j.nucengdes.2017.09.001
    [5] 曹良志, 邹晓阳, 刘宙宇, 等. 高保真数值核反应堆不确定度量化方法研究进展[J]. 核动力工程, 2021, 42(2):1-15. (Cao Liangzhi, Zou Xiaoyang, Liu Zhouyu, et al. Research progresses of uncertainty quantification methods for high fidelity numerical nuclear reactor[J]. Nuclear Power Engineering, 2021, 42(2): 1-15
    [6] Fausto F. Zero power physics test simulations for the AP1000 PWR[R]. CASL-U-2014-0012-001, 2014.
    [7] 郑明光, 严锦泉. 大型先进非能动压水堆CAP1400[M]. 上海: 上海交通大学出版社, 2018

    Zheng Mingguang, Yan Jinquan. Large power advanced passive PWR CAP1400 [M]. Shanghai: Shanghai Jiaotong University Press, 2018.
    [8] 邓力, 李瑞, 丁谦学, 等. 基于JMCT秦山核电厂一期反应堆屏蔽计算与分析[J]. 核动力工程, 2021, 42(2):173-179. (Deng Li, Li Rui, Ding Qianxue, et al. Qinshan-I reactor shielding simulation and sensitivity analysis based on JMCT Monte Carlo code[J]. Nuclear Power Engineering, 2021, 42(2): 173-179
    [9] 张宝印, 李刚, 邓力, 等. 组合几何Monte Carlo粒子输运支撑软件框架JCOGIN的研发[J]. 原子能科学技术, 2013, 47(S2):448-452. (Zhang Baoyin, Li Gang, Deng Li, et al. Research and development of JCOGIN for Monte Carlo particle transport code[J]. Atomic Energy Science and Technology, 2013, 47(S2): 448-452
    [10] Chen Jun, Liu Zhouyu, Zhao Chen, et al. A new high-fidelity neutronics code NECP-X[J]. Annals of Nuclear Energy, 2018, 116: 417-428. doi: 10.1016/j.anucene.2018.02.049
    [11] 张旻婉, 刘宙宇, 温兴坚, 等. 用NECP-X程序计算与分析VERA9#基准题[J]. 现代应用物理, 2021, 12(1):86-91. (Zhang Minwan, Liu Zhouyu, Wen Xingjian, et al. Simulation and analysis of VERA benchmark problem 9# based on NECP-X code[J]. Modern Applied Physics, 2021, 12(1): 86-91
    [12] 彭良辉, 汤春桃, 杨伟焱. 反应堆堆芯先进中子学模拟软件SCAP-N研发[J]. 核动力工程, 2021, 42(2):213-218. (Peng Lianghui, Tang Chuntao, Yang Weiyan. Development of advanced neutronics code SCAP-N for reactor core high fidelity simulation[J]. Nuclear Power Engineering, 2021, 42(2): 213-218
    [13] 费敬然, 司胜义, 陈其昌. 燃料棒多物理数值模型研究与程序开发[J]. 核动力工程, 2016, 37(2):7-12. (Fei Jingran, Si Shengyi, Chen Qichang, et al. Research on fuel rod multi-physics numerical modeling and program development[J]. Nuclear Power Engineering, 2016, 37(2): 7-12
    [14] Gui Minyang, Tian Wenxi, Wu Di, et al. Development of a two-fluid based thermal-hydraulic subchannel analysis code with high-resolution numerical method[J]. Progress in Nuclear Energy, 2021, 134: 103671. doi: 10.1016/j.pnucene.2021.103671
    [15] 彭良辉, 陈笑松, 陈耀东, 等. 基于非均匀射线追踪的栅元模块化特征线方法研究[J]. 原子能科学技术, 2018, 52(4):666-671. (Peng Lianghui, Chen Xiaosong, Chen Yaodong, et al. Study on method of characteristics based on cell modular nonuniform ray tracing[J]. Atomic Energy Science and Technology, 2018, 52(4): 666-671 doi: 10.7538/yzk.2017.youxian.0455
    [16] 彭良辉, 汤春桃, 毕光文, 等. 用于pin-by-pin输运计算的SP3解析基函数展开节块方法研究[J]. 原子能科学技术, 2020, 54(7):1241-1247. (Peng Lianghui, Tang Chuntao, Bi Guangwen, et al. Study on SP3 analytic function expansion nodal method for pin-by-pin transport calculation[J]. Atomic Energy Science and Technology, 2020, 54(7): 1241-1247 doi: 10.7538/yzk.2019.youxian.0472
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  1008
  • HTML全文浏览量:  398
  • PDF下载量:  128
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-27
  • 修回日期:  2021-10-09
  • 网络出版日期:  2021-10-21
  • 刊出日期:  2022-01-11

目录

    /

    返回文章
    返回