留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热管堆在不同基体材料下的燃耗特性分析

马坤峰 胡珀

马坤峰, 胡珀. 热管堆在不同基体材料下的燃耗特性分析[J]. 强激光与粒子束, 2022, 34: 026019. doi: 10.11884/HPLPB202234.210388
引用本文: 马坤峰, 胡珀. 热管堆在不同基体材料下的燃耗特性分析[J]. 强激光与粒子束, 2022, 34: 026019. doi: 10.11884/HPLPB202234.210388
Ma Kunfeng, Hu Po. Depletion calculation of heat pipe cooled nuclear reactor with different monolithic materials[J]. High Power Laser and Particle Beams, 2022, 34: 026019. doi: 10.11884/HPLPB202234.210388
Citation: Ma Kunfeng, Hu Po. Depletion calculation of heat pipe cooled nuclear reactor with different monolithic materials[J]. High Power Laser and Particle Beams, 2022, 34: 026019. doi: 10.11884/HPLPB202234.210388

热管堆在不同基体材料下的燃耗特性分析

doi: 10.11884/HPLPB202234.210388
基金项目: 国家自然科学基金项目(11205098)
详细信息
    作者简介:

    马坤峰,2456230687@sjtu.edu.cn

    通讯作者:

    胡 珀,pohu@sjtu.edu.cn

  • 中图分类号: TL327

Depletion calculation of heat pipe cooled nuclear reactor with different monolithic materials

  • 摘要: 热管冷却核反应堆具有非能动传热、模块化和固有安全性高等特点,在航空探索、深海作业和偏远地区电力市场上有广泛的应用。以洛斯阿拉莫斯国家实验室开发的5 MWth热管堆为研究对象,选择SS-316,Mo-14Re和SiC作为基体候选材料,采用反应堆蒙特卡罗中子输运分析程序对比分析了以上三种基体堆芯的反应性、中子能谱、增殖性能和燃耗演化。结果表明:为了维持堆芯的10年运行,SS-316,Mo-14Re和SiC三种基体堆芯所需的初始燃料235U富集度分别约为19.35%,28.80%和17.10%,SiC基体堆芯所需的初始燃料235U富集度最小;10年后,SiC基体堆芯产生的易裂变核素(239Pu和241Pu)和次锕系核素(通过分离嬗变可被再次利用)的量最高,分别约为11.91 kg和92.08 g。综合以上研究结果,推荐SiC作为热管冷却核反应堆的基体。
  • 图  1  RMC的堆芯几何模型

    Figure  1.  RMC model of heat pipe cooled nuclear reactor

    图  2  不同基体材料下堆芯的keff随时间变化

    Figure  2.  Evolution of keff for reactor with different monolithic materials

    图  3  三种基体堆芯初装235U富集度、235U和238U质量

    Figure  3.  Loaded 235U enrichment, 235U and 238U mass for reactor with different monolithic materials

    图  4  初始时刻3种基体堆芯的中子能谱

    Figure  4.  Initial neutron spectrum of core with different monolithic materials

    图  5  3种基体堆芯内239Pu的量随时间的演变

    Figure  5.  Inventory of 239Pu in three monolithic material cores

    图  6  三种基体堆芯内241Pu的量随时间的演变

    Figure  6.  Inventory of 241Pu in three monolithic materials core

    图  7  241Pu的中子俘获截面和裂变截面

    Figure  7.  Neutron capture cross and fission cross of 241Pu

    图  8  3种基体堆芯内237Np的量随时间的演变

    Figure  8.  Inventory of 237Np in three monolithic material cores

    图  9  3种基体堆芯内241Am的量随时间的演变

    Figure  9.  Inventory of 241Am in three monolithic material cores

  • [1] Wang D Q, Yan B H, Chen J Y. The opportunities and challenges of micro heat piped cooled reactor system with high efficiency energy conversion units[J]. Annals of Nuclear Energy, 2020, 149: 107808. doi: 10.1016/j.anucene.2020.107808
    [2] Yan B H, Wang C, Li L G. The technology of micro heat pipe cooled reactor: A review[J]. Annals of Nuclear Energy, 2020, 135: 106948. doi: 10.1016/j.anucene.2019.106948
    [3] McClure P R, Poston D I, Dasari V R, et al. Design of megawatt power level heat pipe reactors[R]. LA-UR-15-28840, 2015.
    [4] Sterbentz J W, Werner J E, McKellar M G, et al. Special purpose nuclear reactor (5 MW) for reliable power at remote sites assessment report [R]. INL/EXT-16-40741, 2017.
    [5] Ma Y G, Chen E H, Yu H X, et al. Heat pipe failure accident analysis in megawatt heat pipe cooled reactor[J]. Annals of Nuclear Energy, 2020, 149: 107755. doi: 10.1016/j.anucene.2020.107755
    [6] 马誉高, 刘旻昀, 余红星, 等. 热管冷却反应堆核热力耦合研究[J]. 核动力工程, 2020, 41:191-196. (Ma Yugao, Liu Minyun, Yu Hongxing, et al. Neutronic/thermal-mechanical coupling in heat pipe cooled reactor[J]. Nuclear Power Engineering, 2020, 41: 191-196
    [7] Ma Y G, Liu M Y, Xie B H, et al. Neutronic and thermal-mechanical coupling analyses in a solid-state reactor using Monte Carlo and finite element methods[J]. Annals of Nuclear Energy, 2021, 151: 107923. doi: 10.1016/j.anucene.2020.107923
    [8] Zhang W W, Zhang D L, Wang C L, et al. Conceptual design and analysis of a megawatt power level heat pipe cooled space reactor power system[J]. Annals of Nuclear Energy, 2020, 144: 107576. doi: 10.1016/j.anucene.2020.107576
    [9] Sun H, Wang C L, Ma P, et al. Conceptual design and analysis of a multipurpose micro nuclear reactor power source[J]. Annals of Nuclear Energy, 2018, 121: 118–127.
    [10] Khandaq M F, Harto A W, Agung A W. Conceptual core design study for Indonesian Space Reactor (ISR)[J]. Progress in Nuclear Energy, 2020, 118: 103109. doi: 10.1016/j.pnucene.2019.103109
    [11] 周梦飞, 刘国明, 霍小东. 基于包覆燃料的气冷快堆堆芯核设计[J]. 现代应用物理, 2021, 12(1):96-74. (Zhou Mengfei, Liu Guoming, Huo Xiaodong. Core nuclear design for gas cooled fast reactor based on a novel type of fuel dispersion with coated fuel particles[J]. Modern Applied Physics, 2021, 12(1): 96-74
    [12] Li W, Shirven S. Implications of SiC irradiation creep and annealing to UN-SiC fuel rod behavior[J]. Journal of Nuclear Materials, 2020, 542: 152479. doi: 10.1016/j.jnucmat.2020.152479
    [13] Herrmann M, Meisel P, Lippmann W, et al. Joining technology—A challenge for the use of SiC components in HTRs[J]. Nuclear Engineering and Design, 2016, 306: 170-176. doi: 10.1016/j.nucengdes.2015.12.022
    [14] Hernandez R, Todosow M, Brown N R. Micro heat pipe nuclear reactor concepts: Analysis of fuel cycle performance and environmental impacts[J]. Annals of Nuclear Energy, 2019, 126: 419-426.
    [15] Wang K, Li Z G, She D, et al. RMC-A Monte Carlo code for reactor core analysis[J]. Annals of Nuclear Energy, 2015, 82: 121-129. doi: 10.1016/j.anucene.2014.08.048
    [16] Ma Y G, Liu S C, Luo Z, et al. RMC/CTF multiphysics solutions to VERA core physics benchmark problem 9[J]. Annals of Nuclear Energy, 2019, 133: 837-852. doi: 10.1016/j.anucene.2019.07.033
    [17] Chadwick M B, Obloˇzinsk´y P, Herman M, et al. ENDF/B-VII. 0: Next generation evaluated nuclear data library for nuclear science and technology[J]. Nuclear Data Sheets, 2006, 107: 2931-3060. doi: 10.1016/j.nds.2006.11.001
    [18] Zhang A, Zou C Y, Wu J H, et al. Radiotoxicity of minor actinides in thermal, epithermal and fast TMSRs with very high burnup[J]. Annals of Nuclear Energy, 2020, 137: 107162. doi: 10.1016/j.anucene.2019.107162
    [19] Liu B, Wang K, Tu J, et al. Transmutation of minor actinides in the pressurized water reactors[J]. Annals of Nuclear Energy, 2014, 64: 86-92. doi: 10.1016/j.anucene.2013.09.042
  • 加载中
图(9)
计量
  • 文章访问数:  1038
  • HTML全文浏览量:  376
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-31
  • 修回日期:  2021-10-29
  • 录用日期:  2021-11-08
  • 网络出版日期:  2021-11-15
  • 刊出日期:  2022-01-11

目录

    /

    返回文章
    返回