留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高功率高储能脉冲电源中重频电感的设计与分析

王燕 张钦 林福昌 李化

王燕, 张钦, 林福昌, 等. 高功率高储能脉冲电源中重频电感的设计与分析[J]. 强激光与粒子束, 2022, 34: 055002. doi: 10.11884/HPLPB202234.210417
引用本文: 王燕, 张钦, 林福昌, 等. 高功率高储能脉冲电源中重频电感的设计与分析[J]. 强激光与粒子束, 2022, 34: 055002. doi: 10.11884/HPLPB202234.210417
Wang Yan, Zhang Qin, Lin Fuchang, et al. Design and analysis of repetitive frequency inductor in high power and high energy storage pulse power supply[J]. High Power Laser and Particle Beams, 2022, 34: 055002. doi: 10.11884/HPLPB202234.210417
Citation: Wang Yan, Zhang Qin, Lin Fuchang, et al. Design and analysis of repetitive frequency inductor in high power and high energy storage pulse power supply[J]. High Power Laser and Particle Beams, 2022, 34: 055002. doi: 10.11884/HPLPB202234.210417

高功率高储能脉冲电源中重频电感的设计与分析

doi: 10.11884/HPLPB202234.210417
详细信息
    作者简介:

    王 燕,yan7037@mail.hust.edu.cn

    通讯作者:

    张 钦,zhangqin@mail.hust.edu.cn

  • 中图分类号: TM83

Design and analysis of repetitive frequency inductor in high power and high energy storage pulse power supply

  • 摘要: 针对高功率脉冲电源集成系统连续放电的需求,研制了一种用于该系统的重频水冷电感。水冷电感在系统中既调节电源的电流波形,又能起到隔离作用。该重频水冷电感耐压高、通流大、充电间隔周期6 s,可连续工作10 次放电。针对连续放电的需求,通过去离子循环水对重频电感进行降温。现以单模块能量334 kJ、电感量30 µH、通流 100 kA为例进行设计分析,建立重频水冷电感温度场仿真模型,通过ANSYS仿真软件对该电感内部温度瞬态特性进行分析。结果表明:水冷电感通过去离子水冷却效果好,电感每次工作后温度最高达到47 ℃,在下一个工作点到来之前电感温度又恢复到41 ℃;同时该电感在没有加循环水的情况下通过了112 kA的电动力考核。试验结果与理论分析吻合较好,重频水冷电感运行稳定,从而验证了理论分析和设计的正确性。
  • 图  1  单电源模块结构图

    Figure  1.  Single module structure diagram

    图  2  重频水冷电感外形图

    Figure  2.  Contour diagram of the repeatitive frequency water-cooled inductor

    图  3  重频水冷电感三维图

    Figure  3.  3D diagram of the repeatitive frequency water- cooled inductor

    图  4  重频水冷电感线圈

    Figure  4.  Diagram of repeatitive frequency water-cooled inductor coil

    图  5  1/4 匝导线模型

    Figure  5.  1/4 turn traverse model

    图  6  重频水冷电感温度分布云图

    Figure  6.  Cloud map of temperature distribution of the repeatitive frequency water-cooled inductor

    图  7  电感线圈内部导体上的应力

    Figure  7.  Stress on conductor inside inductor coil

    图  8  电感线圈导体表面电磁密度

    Figure  8.  Surface electromagnetic density of inductor coil conductor

    图  9  重频水冷电感通流试验原理图

    Figure  9.  Schematic diagram of repeatitive frequency water-cooled inductor test circuit

    图  10  重频水冷电感通流试验接线图

    Figure  10.  Wiring diagram of repeatitive frequency water cooled inductor flow test

    图  11  重频水冷电感通过了112 kA电流峰值的波形图

    Figure  11.  Waveform of repeatitive frequency water-cooled inductor passing a peak current of 112 kA

    表  1  导线线径与温升的关系

    Table  1.   Relationship between wire diameter and temperature rise

    numberФo/mmФi/mmenergy/kJtemperature/℃
    114626752.96
    下载: 导出CSV

    表  2  趋肤深度与铜管水温、频率的关系

    Table  2.   Relationship between skin depth and temperature and frequency

    numberfrequency/Hztemperature/℃temperature of coefficient/Kskin depth/mm
    120047/40
    47/40
    1.1154/1.0853
    1.1154/1.0853
    3.707
    2166.74.117
    下载: 导出CSV

    表  3  电感流量特性实验数据表

    Table  3.   Experimental data of inductance flow characteristics

    flow rate/(L/min) pressure loss/MPa
    5 0.257
    5.5 0.309
    6 0.364
    6.5 0.413
    7 0.512
    下载: 导出CSV
  • [1] Akiyama H, Sakugawa T, Namihira T, et al. Industrial applications of pulsed power technology[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(5): 1051-1064. doi: 10.1109/TDEI.2007.4339465
    [2] 戴宇峰, 鲁军勇, 张晓, 等. 脉冲功率电源连续发射水冷模拟负载[J]. 国防科技大学学报, 2016, 38(6):6-11. (Dai Yufeng, Lu Junyong, Zhang Xiao, et al. Water-cooling simulated resistance for continuously launching pulsed power supply[J]. Journal of National University of Defense Technology, 2016, 38(6): 6-11 doi: 10.11887/j.cn.201606002
    [3] Hundertmark S, Liebfried O. Options for an electric launcher system[J]. IEEE Transactions on Plasma Science, 2019, 47(10): 4433-4438. doi: 10.1109/TPS.2018.2888899
    [4] Li Zhenxiao, Zhang Yazhou, Wu Jinguo, et al. Design of a 30MJ capacitor-based pulsed power supply for EML[C]//Proceedings of the 21st International Conference on Pulsed Power. Brighton, UK: IEEE, 2017: 1-5.
    [5] Lehmann P, Peter H, Wey J. First experimental results with the ISL 10 MJ DES railgun PEGASUS[J]. IEEE Transactions on Magnetics, 2001, 37(1): 435-439. doi: 10.1109/20.911871
    [6] Hundertmark S, Schneider M, Simicic D, et al. Experiments to increase the used energy with the PEGASUS railgun[J]. IEEE Transactions on Plasma Science, 2014, 42(10): 3180-3185. doi: 10.1109/TPS.2014.2314131
    [7] 张龙霞, 李碧清, 霍敏. 国外电磁炮发展概述[J]. 飞航导弹, 2011, 40(10):23-27. (Zhang Longxia, Li Biqing, Huo Min. Overview of foreign electromagnetic gun development[J]. Maneuverable Missile, 2011, 40(10): 23-27
    [8] 范晶, 宋朝文. 舰载电磁轨道炮用高功率脉冲电源研究进展[J]. 电气技术, 2010(s1):70-72. (Fan Jing, Song Chaowen. Research progress of the high-powered pulsed power supply of naval electromagnetic rail gun[J]. Electrical Engineering, 2010(s1): 70-72
    [9] 何巧, 马游春, 马子光, 等. 高功率脉冲电源电压测试系统设计[J]. 仪表技术与传感器, 2020(2):46-49,113. (He Qiao, Ma Youchun, Ma Ziguang, et al. Design of high power pulse power supply voltage test system[J]. Instrument Technique and Sensor, 2020(2): 46-49,113 doi: 10.3969/j.issn.1002-1841.2020.02.011
    [10] Conway J T. Inductance calculations for circular coils of rectangular cross section and parallel axes using Bessel and Struve functions[J]. IEEE Transactions on Magnetics, 2010, 46(1): 75-81. doi: 10.1109/TMAG.2009.2026574
    [11] Conway J T. Inductance calculations for noncoaxial coils using Bessel functions[J]. IEEE Transactions on Magnetics, 2007, 43(3): 1023-1034. doi: 10.1109/TMAG.2006.888565
    [12] Conway J T. Analytical solutions for the self- and mutual inductances of concentric coplanar disk coils[J]. IEEE Transactions on Magnetics, 2013, 49(3): 1135-1142. doi: 10.1109/TMAG.2012.2229287
    [13] Luo Yao, Chen Baichao. Improvement of self-inductance calculations for circular coils of rectangular cross section[J]. IEEE Transactions on Magnetics, 2013, 49(3): 1249-1255. doi: 10.1109/TMAG.2012.2228499
    [14] Babic S, Salon S, Akyel C. The mutual inductance of two thin coaxial disk coils in air[J]. IEEE Transactions on Magnetics, 2004, 40(2): 822-825. doi: 10.1109/TMAG.2004.824810
    [15] 卡兰塔罗夫, 采依特林. 电感计算手册[M]. 陈汤铭, 刘保安, 罗应立, 等译. 北京: 机械工业出版社, 1992

    КалантаровП. Л. , ЦейтлинЛ. А. Расчет индуктивностей справочаи книга[M]. Chen Tangming, Liu Baoan, Luo Yingli, et al, trans. Beijing: China Machine Press, 1992
    [16] 罗垚, 陈柏超, 袁佳歆, 等. 倾斜轴空心矩形截面圆柱线圈互感计算[J]. 电工技术学报, 2012, 27(5):132-136. (Luo Yao, Chen Baichao, Yuan Jiaxin, et al. Mutual inductance calculations of inclined axial air-core circular coils with rectangular cross-sections[J]. Transactions of China Electrotechnical Society, 2012, 27(5): 132-136
    [17] 罗垚, 陈柏超. 空心矩形截面圆柱线圈自感计算的新方法[J]. 电工技术学报, 2012, 27(6):1-5. (Luo Yao, Chen Baichao. New method for self-inductance calculations of air-core circular coils with rectangular cross-sections[J]. Transactions of China Electrotechnical Society, 2012, 27(6): 1-5
    [18] 罗垚, 陈柏超, 周洪. 有限长圆柱磁屏同轴线圈电感计算方法[J]. 电工技术学报, 2016, 31(14):122-129. (Luo Yao, Chen Baichao, Zhou Hong. Approach for inductance calculations of coaxial circular coils shielded by cylindrical magnetic screen of finite length[J]. Transactions of China Electrotechnical Society, 2016, 31(14): 122-129 doi: 10.3969/j.issn.1000-6753.2016.14.014
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  726
  • HTML全文浏览量:  298
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-23
  • 修回日期:  2021-12-10
  • 录用日期:  2022-01-04
  • 网络出版日期:  2022-01-22
  • 刊出日期:  2022-05-15

目录

    /

    返回文章
    返回