留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

同轴线法在小孔径真空元件阻抗测量中的应用

孙元胜 田赛克 王娜 岳森 张源

孙元胜, 田赛克, 王娜, 等. 同轴线法在小孔径真空元件阻抗测量中的应用[J]. 强激光与粒子束, 2022, 34: 024002. doi: 10.11884/HPLPB202234.210439
引用本文: 孙元胜, 田赛克, 王娜, 等. 同轴线法在小孔径真空元件阻抗测量中的应用[J]. 强激光与粒子束, 2022, 34: 024002. doi: 10.11884/HPLPB202234.210439
Sun Yuansheng, Tian Saike, Wang Na, et al. Application of coaxial wire method in impedance measurement of small aperture vacuum component[J]. High Power Laser and Particle Beams, 2022, 34: 024002. doi: 10.11884/HPLPB202234.210439
Citation: Sun Yuansheng, Tian Saike, Wang Na, et al. Application of coaxial wire method in impedance measurement of small aperture vacuum component[J]. High Power Laser and Particle Beams, 2022, 34: 024002. doi: 10.11884/HPLPB202234.210439

同轴线法在小孔径真空元件阻抗测量中的应用

doi: 10.11884/HPLPB202234.210439
基金项目: 国家自然科学基金面上项目(11775239)
详细信息
    作者简介:

    孙元胜,sunystw@126.com

    通讯作者:

    田赛克,tiansk@ihep.ac.cn

  • 中图分类号: O56

Application of coaxial wire method in impedance measurement of small aperture vacuum component

  • 摘要: 粒子加速器中真空元件的阻抗是引起束流不稳定的重要原因。基于储存环的新一代同步辐射光源的设计发射度更小,相应地要求更小的真空盒孔径,进而带来阻抗的显著增加,这就要求在设计阶段对真空元件的阻抗进行准确的评估和优化。阻抗测量是验证阻抗模型准确性的重要手段,而同轴线法是常用的实验室测量方法。对小孔径真空元件同轴线法纵向阻抗测量进行了研究,针对窄带阻抗元件,使用pillbox腔开展了相关的阻抗测量,研究了不同的内导体尺寸对于测量结果的影响,同时基于尾场模拟、散射参数模拟以及本征模模拟对测量结果进行了验证,模拟和测量结果符合很好,并证明原有的内导体导致谐振峰频移的理论分析应用于小孔径元件时存在偏差。此外针对非窄带阻抗元件,对条带冲击磁铁结构进行了同轴线法阻抗测量,研究了内导体对结果的影响,验证了同轴线法测量的有效性。
  • 图  1  Pillbox腔同轴线法阻抗测量装置

    Figure  1.  Coaxial wire measurement setup for the pillbox cavity

    图  2  采用不同内导体直径测量得到的pillbox腔纵向阻抗实部和虚部

    Figure  2.  Real part and imaginary part of the longitudinal impedance of the pillbox cavity measured with different inner conductor diameter

    图  3  CST尾场求解器模拟计算的pillbox腔纵向阻抗实部和虚部

    Figure  3.  Real part and imaginary part of the longitudinal impedance of pillbox cavity simulated by CST Wakefield Solver

    图  4  散射参数模拟中采用的三维模型,其中束管两端设置为波导端口

    Figure  4.  3D model used for the simulation of scattering parameters, where the waveguide ports have been set at both ends of the beam pipe

    图  5  模拟得到不同内导体尺寸下散射参数

    Figure  5.  Simulated scattering parameters with different inner conductor diameter

    图  6  不同直径内导体引起的频率漂移

    Figure  6.  Frequency shifts at different inner conductor diameter

    图  7  条带冲击磁铁同轴线法阻抗测量装置

    Figure  7.  Coaxial wire measurement setup for the stripline kicker

    图  8  条带冲击磁铁三维模型

    Figure  8.  3D model of stripline kicker

    图  9  采用不同内导体直径同轴线法测量的纵向阻抗实部和虚部,并与CST尾场模拟计算结果进行对比

    Figure  9.  Real part and imaginary part of the longitudinal impedance measured by the coaxial wire method with different inner conductor diameter, and compared with that calculated by CST wake field simulations

  • [1] Sands M, Rees J. A bench measurement of the energy loss of a stored beam to a cavity[R]. Menlo Park, CA: SLAC National Accelerator Lab, 2016.
    [2] 王光伟. BEPC储存环纵向阻抗的测练[D]. 北京: 中国科学院高能物理研究所, 1989

    Wang Guangwei. Impedance measurement of BEPC storage ring[D]. Beijing: Institute of High Energy Physics, Chinese Academy of Sciences, 1989
    [3] 黄刚. 纵向耦合阻抗测量及束流反馈系统的研究[D]. 北京: 清华大学, 2002

    Huang Gang. The study of coaxial line method longitudinal coupling impedance measurement and beam feedback system[D]. Beijing: Tsinghua University, 2002
    [4] 周德民. BEPCII储存环真空部件纵向阻抗计算和测量[D]. 北京: 中国科学院高能物理研究所, 2005

    Zhou Demin. Longitudinal impedance calculations and measurements of vacuum components for BEPCII storage rings[D]. Beijing: Institute of High Energy Physics, Chinese Academy of Sciences, 2005
    [5] Zhou Demin, Wang Jiuqing, Zhou Lijuan, et al. Longitudinal impedance measurements of the components for the BEPCII[C]//Proceedings of the 2005 Particle Accelerator Conference. Knoxville: IEEE, 2005: 3212-3214.
    [6] 黄良生. CSNS/RCS束流集体效应及阻抗测量理论和实验研究[D]. 北京: 中国科学院大学, 2014

    Huang Liangsheng. The theoretical and experimental study on the coupling impedance measurement and the collective effects in CSNS/RCS[D]. Beijing: University of Chinese Academy of Sciences, 2014
    [7] 王琳, 徐宏亮, 冯光耀. 同轴线方法测量束流耦合阻抗的有效性分析[J]. 强激光与粒子束, 2002, 14(6):920-924. (Wang Lin, Xu Hongliang, Feng Guangyao. Validity of coaxial-wire method in impedance measurement[J]. High Power Laser and Particle Beams, 2002, 14(6): 920-924
    [8] Toyomasu T, Izawa M, Kamiya Y. Effect of a wire on the electromagnetic field in an accelerating cavity in the coaxial-wire method[J]. Japanese Journal of Applied Physics, 1995, 34: 340. doi: 10.1143/JJAP.34.340
    [9] Argan A, Palumbo L, Masullo M R, et al. On the Sands and Rees measurement method of the longitudinal coupling impedance[C]//Proceedings of the 1999 Particle Accelerator Conference (Cat. No. 99CH36366). New York: IEEE, 1999.
    [10] Jiao Yi, Xu Gang, Cui Xiaohao, et al. The HEPS project[J]. Journal of Synchrotron Radiation, 2018, 25(6): 1611-1618. doi: 10.1107/S1600577518012110
    [11] Wang L, Chen J H, Shi H, et al. A novel 5-cell strip-line kicker prototype for the HEPS on-axis injection system[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 992: 165040. doi: 10.1016/j.nima.2021.165040
    [12] Wang N, Tian S K, Wang L, et al. Impedance optimization and measurements of the injection stripline kicker[J]. Physical Review Accelerators and Beams, 2021, 24: 034401. doi: 10.1103/PhysRevAccelBeams.24.034401
  • 加载中
图(9)
计量
  • 文章访问数:  734
  • HTML全文浏览量:  324
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-18
  • 修回日期:  2021-11-24
  • 网络出版日期:  2021-12-01
  • 刊出日期:  2022-01-11

目录

    /

    返回文章
    返回