留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海洋条件下自然循环铅铋反应堆偏环运行特性分析

王旭 赵亚楠 赵鹏程 于涛

王旭, 赵亚楠, 赵鹏程, 等. 海洋条件下自然循环铅铋反应堆偏环运行特性分析[J]. 强激光与粒子束, 2022, 34: 056006. doi: 10.11884/HPLPB202234.210474
引用本文: 王旭, 赵亚楠, 赵鹏程, 等. 海洋条件下自然循环铅铋反应堆偏环运行特性分析[J]. 强激光与粒子束, 2022, 34: 056006. doi: 10.11884/HPLPB202234.210474
Wang Xu, Zhao Ya’nan, Zhao Pengcheng, et al. Asymmetrical operation characteristics of natural circulation lead-bismuth reactor under ocean conditions[J]. High Power Laser and Particle Beams, 2022, 34: 056006. doi: 10.11884/HPLPB202234.210474
Citation: Wang Xu, Zhao Ya’nan, Zhao Pengcheng, et al. Asymmetrical operation characteristics of natural circulation lead-bismuth reactor under ocean conditions[J]. High Power Laser and Particle Beams, 2022, 34: 056006. doi: 10.11884/HPLPB202234.210474

海洋条件下自然循环铅铋反应堆偏环运行特性分析

doi: 10.11884/HPLPB202234.210474
基金项目: 湖南省教育厅优秀青年项目(200SJY010);湖南省科技创新团队项目(2020RC4053)
详细信息
    作者简介:

    王 旭,wangxu117@stu.usc.edu.cn

    通讯作者:

    赵亚楠,chinazhaoyanan@hotmail.com

  • 中图分类号: TL33

Asymmetrical operation characteristics of natural circulation lead-bismuth reactor under ocean conditions

  • 摘要: 基于二次开发RELAP5/MOD3.1程序,分析了典型海洋条件下的10 MW自然循环铅铋反应堆偏环运行特性。分析结果表明:反应堆在倾斜条件下偏环运行时,其系统参数对倾角变化敏感性较弱;起伏条件下,偏环运行导致流量的波动幅度降低为9%,出口温度降低约16 K。起伏幅度越大、流量波动越剧烈;起伏周期越大、流量震荡越明显,但影响效果也在减弱;摇摆条件下,堆芯流量、出口温度降低,反应堆引入更高的安全裕量;摇摆幅度越大、摇摆周期越小,流量波动幅度越大,且堆芯出口温度对周期变化敏感性明显高于摇摆幅度变化。
  • 图  1  TALL-3D实验装置图(a)与节点图(b)

    Figure  1.  Schematic diagram of TALL-3D experimental device (a) and node diagram (b)

    图  2  摇摆流量对比

    Figure  2.  Rolling flow comparison

    图  3  起伏流量对比

    Figure  3.  Heaving flow comparison

    图  4  SNCLFR-10反应堆结构简图(a)与节点图(b)

    Figure  4.  SNCLFR-10 reactor structure sketch (a) and node diagram (b)

    图  5  自然循环流量

    Figure  5.  Natural circulation flow

    图  6  堆芯温度变化

    Figure  6.  Temperature of the core

    图  7  倾斜条件下自然循环流量

    Figure  7.  Natural circulation flow under inclined condition

    图  8  倾角对堆芯参数的影响

    Figure  8.  Effect of inclined angle on core parameters

    图  9  堆芯出口温度(a)、流量(b)变化

    Figure  9.  Variation of core outlet temperature (a) and flow (b)

    图  10  不同倾角下堆芯流量(a)、出口温度(b)变化

    Figure  10.  Effect of inclination angle on core flow (a) and outlet temperature(b)

    图  11  起伏条件下自然循环流量

    Figure  11.  Natural circulation flow under heaving condition

    图  12  起伏周期(a)、幅度(b)对流量的影响

    Figure  12.  Effect of heaving period (a) and amplitude(b) on flow

    图  13  堆芯温度(a)和自然循环流量(b)变化

    Figure  13.  Variation of core temperature (a) and natural circulation flow (b)

    图  14  起伏周期(a)和幅度(b)对流量的影响

    Figure  14.  Effect of heaving period (a) and amplitude(b) on flow

    图  15  摇摆条件下自然循环流量

    Figure  15.  Natural circulation flow under rolling condition

    图  16  摇摆幅度(a)和周期(b)对流量的影响

    Figure  16.  Effect of rolling amplitude (a) and period (b) on flow

    图  17  堆芯温度(a)和自然循环流量(b)变化

    Figure  17.  Variation of core temperature (a) and natural circulation flow (b)

    图  18  摇摆幅度(a)和周期(b)对流量的影响

    Figure  18.  Effect of rolling amplitude (a) and period (b) on flow

    图  19  摇摆周期(a)和幅度(b)对堆芯出口温度的影响

    Figure  19.  Effect of rolling period (a) and amplitude (b) on core outlet temperature

    表  1  RELAP5中的液相铅铋物性关系式

    Table  1.   Formula of RELAP5 program for liquid LBE

    parameterthermodynamic properties
    density${\rho _{{\rm{LBE}}} }[{\rm{kg}} \cdot {{\rm{m}}^{ - 3} }] = 11\;096.0 - 1.303\;6 \times {T_{{\rm{LBE}}} }$
    saturation vapor pressure${p_s}_{({\rm{LBE}})}[{\rm{Pa}}] = 1.11 \times {10^{10}} \cdot \exp \Bigg( - \dfrac{{22\;552.0}}{{{T_{{\rm{LBE}}}}}}\Bigg)$
    heat capacity${c_p}_{({\rm{LBE}})}[{\rm{J}} \cdot {\rm{k}}{{\rm{g}}^{ - 1}} \cdot {{\rm{K}}^{ - 1}}] = 159.0 - 2.72 \times {10^{ - 2}} \times {T_{{\rm{LBE}}}} + 7.12 \times {10^{ - 6}} \times T_{{\rm{LBE}}}^2$
    internal energy${U_{({\rm{LBE}})}}[{\rm{J}} \cdot {\rm{k}}{{\rm{g}}^{ - 1}}] = 159.0({T_{{\rm{LBE}}}} - {T_{\rm{M}}}) + \dfrac{{2.72 \times {{10}^{ - 2}}({T^2}_{{\rm{LBE}}} - {T^2}_{\rm{M}})}}{2} + \dfrac{{7.12 \times {{10}^{ - 6}}({T^3}_{{\rm{LBE}}} - {T^3}_{\rm{M}})}}{3}$
    ${T_{\rm{M}}} = 398.15K$
    enthalpy${h_{({\rm{LBE}})}}[{\rm{J}} \cdot {\rm{k}}{{\rm{g}}^{ - 1}}] = U + pv$
    entropy${{{S}}_{({\rm{LBE}})}}[{\rm{J}} \cdot {\rm{k}}{{\rm{g}}^{ - 1}} \cdot {{\rm{K}}^{ - 1}}] = 159.0\ln \dfrac{{{T_{{\rm{LBE}}}}}}{{{T_{\rm{M}}}}} + 2.72 \times {10^{ - 2}}({T_{{\rm{LBE}}}} - {T_{\rm{M}}}) + \dfrac{{7.12 \times {{10}^{ - 6}}({T^2}_{{\rm{LBE}}} - {T^2}_{\rm{M}})}}{2}$
    thermal coefficient of expansion${\beta _{({\rm{LBE}})}}[{{\rm{K}}^{ - 1}}] = \dfrac{1}{{(8\;383.2 - {T_{{\rm{LBE}}}})}}$
    pressure coefficient of expansion${\kappa _{({\rm{LBE}})}}[{\rm{P}}{{\rm{a}}^{ - 1}}] = \dfrac{1}{{(11\;096.0 - 1.303\;6{T_{{\rm{LBE}}}}){{(1\;773.0 + 0.104\;9{T_{{\rm{LBE}}}} + 2.87 \cdot {{10}^{ - 4}}T_{{\rm{LBE}}}^{ - 4})}^2}}}$
    viscosity${\eta _{({\rm{LBE}})}}[{\rm{Pa}} \cdot {\rm{s}}] = 4.94 \times {10^{ - 4}} \times \exp \left( {\dfrac{{754.1}}{{{T_{{\rm{LBE}}}}}}} \right)$
    surface tension${\sigma _{({\rm{LBE}})}}[{\rm{N}} \cdot {{\rm{m}}^{ - 1}}] = 0.367 - 5.5 \cdot {10^{ - 5}}\left( {{T_{{\rm{LBE}}}} - 1\;073.15} \right)$
    thermal conductivity${\lambda _{({\rm{LBE}})}}[{\rm{W}} \cdot {{\rm{m}}^{ - 1}} \cdot {{\rm{K}}^{ - 1}}] = 3.61 + 1.517 \times {10^{ - 2}}{T_{{\rm{LBE}}}} - 1.741 \times {10^{ - 6}}T_{{\rm{LBE}}}^2$
    下载: 导出CSV

    表  2  自然循环实验值与计算值对比

    Table  2.   Comparison of experimental value and calculated value of natural circulation

    parameterMH flow/(kg/s)TS flow/(kg/s)total flow/(kg/s)MH inlet temperature/KMH outlet temperature/KTS inlet temperature/KTS outlet temperature/K
    experiment 0.238 0.293 0.533 473.28 556.63 457.53 567.14
    extension 0.242 0.29 0.533 473.19 559.99 473.19 565.44
    error/% −1.68 1.023 0 0.019 −0.603 0.492 0.300
    RELAP5-3D 0.238 0.296 0.534 473.2 561.23 473.2 561.75
    error/% 0 −1.023 −0.187 0.017 −0.826 0.490 0.950
    下载: 导出CSV

    表  3  堆芯关键参数设计值与计算值对比

    Table  3.   Comparison of design values and calculated values of key parameters in core

    parameterpower/MWinlet temperature/Koutlet temperature/Kflow/(kg/s)flow rate(m/s)
    design value 10 533 663 529.4 0.12356
    extension 10 533.52 659.63 529.28 0.12133
    error/% 0 −0.098 0.508 0.022 1.804
    RELAP5-3D 10 533.34 659.1 529.84 0.12123
    error/% 0 −0.064 0.588 −0.083 1.886
    下载: 导出CSV
  • [1] 吴宜灿, 王明煌, 黄群英, 等. 铅基反应堆研究现状与发展前景[J]. 核科学与工程, 2015, 35(2):213-221. (Wu Yican, Wang Minghuang, Huang Qunying, et al. Development status and prospects of lead-based reactors[J]. Nuclear Science and Engineering, 2015, 35(2): 213-221 doi: 10.3969/j.issn.0258-0918.2015.02.004
    [2] 王泽鸣. VVER-1000偏环运行蒸汽发生器换热特性数值模拟研究[D]. 哈尔滨: 哈尔滨工业大学, 2016

    Wang Zeming. Numerical simulation of steam generator heat transfer characteristics in VVER-1000 asymmetric operation[D]. Harbin: Harbin Institute of Technology, 2016
    [3] 程建平. 基于CFD的四环路压水堆偏环运行数值模拟[D]. 哈尔滨: 哈尔滨工业大学, 2015

    Cheng Jianping. Numerical simulation on four-loop PWR at asymmetric operation conditions based on CFD[D]. Harbin: Harbin Institute of Technology, 2015
    [4] 王苏豪, 黄善清, 高胜, 等. 液态铅铋实验回路KYLIN-Ⅱ热平衡理论分析研究[J]. 核科学与工程, 2013, 33(4):409-413,428. (Wang Suhao, Huang Shanqing, Gao Sheng, et al. Analysis on heat balance for liquid lead-bismuth experimental loop KYLIN-II[J]. Nuclear Science and Engineering, 2013, 33(4): 409-413,428
    [5] Orlova E E, Smirnov V P, Vlasenko A E, et al. Celsist subchannel module aided simulation of liquid-metal coolant flow in experimental FA[J]. Atomic Energy, 2020, 128(2): 71-77. doi: 10.1007/s10512-020-00653-z
    [6] Martelli D, Forgione N, Di Piazza I, et al. HLM fuel pin bundle experiments in the CIRCE pool facility[J]. Nuclear Engineering and Design, 2015, 292: 76-86. doi: 10.1016/j.nucengdes.2015.06.004
    [7] 张家心, 王成龙, 赵寒冰, 等. RELAP5铅铋快堆模型拓展及验证[J]. 原子能科学技术, 2021, 55(7):1260-1267. (Zhang Jiaxin, Wang Chenglong, Zhao Hanbing, et al. RELAP5 modification and verification for lead-bismuth fast reactor[J]. Atomic Energy Science and Technology, 2021, 55(7): 1260-1267
    [8] Kumari I, Khanna A. Preliminary validation of RELAP5/Mod4.0 code for LBE cooled NACIE facility[J]. Nuclear Engineering and Design, 2017, 314: 217-226. doi: 10.1016/j.nucengdes.2017.02.004
    [9] Angelucci M, Martelli D, Barone G, et al. STH-CFD codes coupled calculations applied to HLM loop and pool systems[J]. Science and Technology of Nuclear Installations, 2017, 2017: 1936894.
    [10] Ishida I, Tomiai I. Development of analysis code for thermal hydro-dynamics of marine reactor under multi-dimensional ship motions, RETRAN-02/GRAV[R]. Tokyo: Atomic Energy Research Inst, 1992: 135.
    [11] 王冰. 海洋条件下核反应堆热工水力分析程序开发[D]. 哈尔滨: 哈尔滨工程大学, 2017

    Wang Bing. The development of a thermal hydraulic analysis code of nuclear reactor under ocean conditions[D]. Harbin: Harbin Engineering University, 2017
    [12] 谭思超, 高璞珍, 苏光辉. 摇摆运动条件下自然循环复合型脉动的实验研究[J]. 原子能科学技术, 2008, 42(11):1007-1011. (Tan Sichao, Gao Puzhen, Su Guanghui. Experimental research on natural circulation complex oscillations under rolling motion conditions[J]. Atomic Energy Science and Technology, 2008, 42(11): 1007-1011
    [13] Murata H, Sawada K I, Kobayashi M. Experimental investigation of natural convection in a core of a marine reactor in rolling motion[J]. Journal of Nuclear Science and Technology, 2000, 37(6): 509-517. doi: 10.1080/18811248.2000.9714924
    [14] Ishida T, Yoritsune T. Effects of ship motions on natural circulation of deep sea research reactor DRX[J]. Nuclear Engineering and Design, 2002, 215(1/2): 51-67.
    [15] 刘志鹏, 王成龙, 张大林, 等. 运动条件下铅铋反应堆热工水力特性研究[J]. 原子能科学技术, 2021, 55(5):811-821. (Liu Zhipeng, Wang Chenglong, Zhang Dalin, et al. Thermal-hydraulic analysis of lead-bismuth reactor under moving condition[J]. Atomic Energy Science and Technology, 2021, 55(5): 811-821
    [16] 刘佩琪. 摇摆条件下一体化自然循环铅基快堆物理-热工耦合特性初步研究[D]. 衡阳: 南华大学, 2019

    Liu Peiqi. Preliminary study on physical-thermal coupling technology of integrated reactor under rolling conditions[D]. Hengyang: University of South China, 2019
    [17] 郑云涛. 小型核反应堆非对称运行数值分析[D]. 哈尔滨: 哈尔滨工程大学, 2014

    Zheng Yuntao. A numerical analysis of asymmetric operation on the small nuclear reactors[D]. Harbin: Harbin Engineering University, 2014
    [18] Um K S, Ryu S H, Choi Y S, et al. Experimental and computational study of the core inlet temperature pattern under asymmetric loop conditions[J]. Nuclear Technology, 1999, 125(3): 305-315. doi: 10.13182/NT99-A2949
    [19] Grudev P, Pavlova M. Simulation of loss-of-flow transient in a VVER-1000 nuclear power plant with RELAP5/MOD3.2[J]. Progress in Nuclear Energy, 2004, 45(1): 1-10. doi: 10.1016/j.pnucene.2004.08.001
    [20] Espinoza S, Hugo V, Böttcher M. Investigations of the VVER-1000 coolant transient benchmark phase 1 with the coupled system code RELAP5/PARCS[J]. Progress in Nuclear Energy, 2006, 48(8): 865-879. doi: 10.1016/j.pnucene.2006.06.004
    [21] Fazio C, Sobolev V, Aerts A, et al. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technologies[R]. ISBN 978-92-64-99002-9. OECD/NEA, 2015.
    [22] The RELAP5-3D Code Development Team. RELAP5-3D code manual volume IV: models and correlations[R]. INEEL-EXT-98-00834.
    [23] Borishanskii V M, Gotovskii M A, Firsova É V. Heat transfer to liquid metals in longitudinally wetted bundles of rods[J]. Soviet Atomic Energy, 1969, 27(6): 1347-1350. doi: 10.1007/BF01118660
    [24] Rehme K. Pressure drop performance of rod bundles in hexagonal arrangements[J]. International Journal of Heat and Mass Transfer, 1972, 15(12): 2499-2517. doi: 10.1016/0017-9310(72)90143-3
    [25] 文俊. CiADS铅基反应堆堆芯流量分配设计与优化[D]. 兰州: 中国科学院大学(中国科学院近代物理研究所), 2021

    Wen Jun. Analysis and optimization of flow distribution for the CiADS lead-based reactor core[D]. Lanzhou: University of Chinese Academy of Sciences (Institute of Modern Physics, Chinese Academy of Sciences, 2021
    [26] Grishchenko D, Jeltsov M, Kööp K, et al. The TALL-3D facility design and commissioning tests for validation of coupled STH and CFD codes[J]. Nuclear Engineering and Design, 2015, 290: 144-153. doi: 10.1016/j.nucengdes.2014.11.045
    [27] Papukchiev A, Jeltsov M, Kööp K, et al. Comparison of different coupling CFD–STH approaches for pre-test analysis of a TALL-3D experiment[J]. Nuclear Engineering and Design, 2015, 290: 135-143. doi: 10.1016/j.nucengdes.2014.11.008
    [28] Kööp K. Application of a system thermal-hydraulics code to development of validation process for coupled STH-CFD codes[D]. ISBN 978-91-7729-727-7 , 2018.
    [29] Grishchenko D, Papukchiev A, Liu Chunyu, et al. TALL-3D open and blind benchmark on natural circulation instability[J]. Nuclear Engineering and Design, 2020, 358: 110386. doi: 10.1016/j.nucengdes.2019.110386
    [30] 王占伟. 摇摆运动下冷却剂低流速流动、传热特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2013

    Wang Zhanwei. The flow and heat transfer characteristics for low flow rate flow under rolling motion conditions[D]. Harbin: Harbin Engineering University, 2013
    [31] Ishida I, Kusunoki T, Murata H, et al. Thermal-hydraulic behavior of a marine reactor during oscillations[J]. Nuclear Engineering and Design, 1990, 120(2/3): 213-225.
  • 加载中
图(19) / 表(3)
计量
  • 文章访问数:  852
  • HTML全文浏览量:  262
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-09
  • 修回日期:  2021-12-21
  • 录用日期:  2022-01-04
  • 网络出版日期:  2022-01-11
  • 刊出日期:  2022-05-15

目录

    /

    返回文章
    返回