留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
滕建, 邓志刚, 单连强, 等. 激光聚变内爆D3He质子源的在线诊断系统[J]. 强激光与粒子束, 2022, 34: 052001. doi: 10.11884/HPLPB202234.210497
引用本文: 滕建, 邓志刚, 单连强, 等. 激光聚变内爆D3He质子源的在线诊断系统[J]. 强激光与粒子束, 2022, 34: 052001. doi: 10.11884/HPLPB202234.210497
Teng Jian, Deng Zhigang, Shan Lianqiang, et al. Online diagnosis system for D3He proton in laser fusion implosion experiments[J]. High Power Laser and Particle Beams, 2022, 34: 052001. doi: 10.11884/HPLPB202234.210497
Citation: Teng Jian, Deng Zhigang, Shan Lianqiang, et al. Online diagnosis system for D3He proton in laser fusion implosion experiments[J]. High Power Laser and Particle Beams, 2022, 34: 052001. doi: 10.11884/HPLPB202234.210497

激光聚变内爆D3He质子源的在线诊断系统

doi: 10.11884/HPLPB202234.210497
基金项目: 国家重点研发计划项目(2017YFA0206001);国家自然科学基金项目(11875048,11775202);等离子体物理重点实验室基金项目(6142A04190102,6142A04210103)
详细信息
    作者简介:

    滕 建,tengjian@mail.ustc.edu.cn

    通讯作者:

    单连强,slqiang@caep.cn

    周维民,zhouwm@caep.cn

  • 中图分类号: O539

Online diagnosis system for D3He proton in laser fusion implosion experiments

  • 摘要: 提出了一种基于混合像素探测器作为记录介质的用于激光聚变内爆D3He质子源能谱和产额测量的在线磁谱仪诊断系统。通过对探测器上特征团簇数目和能量的识别,结合诊断系统排布,可以快速获取激光聚变反应产生的D3He质子源的能谱和产额。在神光装置上对该诊断系统进行了测试。实验使用31束纳秒激光聚焦到靶丸上驱动聚变反应。靶丸内充有原子比1∶1的D23He的混合气体。在线磁谱仪诊断系统测量到了中心能量在14.6 MeV、半高全宽为2.1 MeV、产额约(2.3±0.13)×109的初级D3He质子能谱。该系统的建立可以实时给出D3He质子源能谱和产额信息,从而更加及时地指导实验的开展。
  • 图  1  质子在线探测系统结构图

    Figure  1.  Schematic of the online proton diagnosis system

    图  2  Timepix探测器基本结构示意图

    Figure  2.  Schematic of the Timepix detector

    图  3  质子在磁场中偏转示意图

    Figure  3.  Schematic of proton trace in the magnetic field

    图  4  质子在磁谱仪中的运动轨迹

    Figure  4.  Trace of proton in the magnetic spectrometer

    图  5  质子能量与偏移距离的关系

    Figure  5.  Relationship of proton energy and deflection distance

    图  6  实验采集到的图像

    Figure  6.  Signal on the detector

  • [1] Zhou C D, Theobald W, Betti R, et al. High-ρR implosions for fast-ignition fuel assembly[J]. Physical Review Letters, 2007, 98: 025004. doi: 10.1103/PhysRevLett.98.025004
    [2] Delamater N D, Wilson D C, Kyrala G A, et al. Use of d-3He proton spectroscopy as a diagnostic of shell ρR in capsule implosion experiments with~0.2 NIF scale high temperature Hohlraums at Omega[J]. Review of Scientific Instruments, 2008, 79: 10E526. doi: 10.1063/1.2978198
    [3] Frenje J A, Li C K, Séguin F H, et al. Diagnosing fuel ρR and ρR asymmetries in cryogenic deuterium-tritium implosions using charged-particle spectrometry at OMEGA[J]. Physics of Plasmas, 2009, 16: 042704. doi: 10.1063/1.3098540
    [4] Goncharov V N, Sangster T C, Radha P B, et al. Performance of direct-drive cryogenic targets on OMEGA[J]. Physics of Plasmas, 2008, 15: 056310. doi: 10.1063/1.2856551
    [5] Séguin F H, Li C K, Frenje J A, et al. Using secondary-proton spectra to study the compression and symmetry of deuterium-filled capsules at OMEGA[J]. Physics of Plasmas, 2002, 9(6): 2725-2737. doi: 10.1063/1.1472502
    [6] Li C K, Séguin F H, Frenje J A, et al. Charged-particle probing of X-ray-driven inertial-fusion implosions[J]. Science, 2010, 327(5970): 1231-1235. doi: 10.1126/science.1185747
    [7] 单连强, 吴凤娟, 袁宗强, 等. 激光惯性约束聚变动理学效应研究进展[J]. 强激光与粒子束, 2021, 33:012004. (Shan Lianqiang, Wu Fengjuan, Yuan Zongqiang, et al. Research progress of kinetic effects in laser inertial confinement fusion[J]. High Power Laser and Particle Beams, 2021, 33: 012004 doi: 10.11884/HPLPB202133.200235
    [8] Huntington C M, Fiuza F, Ross J S, et al. Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows[J]. Nature Physics, 2015, 11(2): 173-176. doi: 10.1038/nphys3178
    [9] Rosenberg M J, Li C K, Fox W, et al. A laboratory study of asymmetric magnetic reconnection in strongly driven plasmas[J]. Nature Communications, 2015, 6: 6190. doi: 10.1038/ncomms7190
    [10] 滕建, 赵宗清, 丁永坤, 等. 基于D3He反应产生的单能质子对ICF内爆过程的照相模拟研究[J]. 强激光与粒子束, 2011, 23(1):137-140. (Teng Jian, Zhao Zongqing, Ding Yongkun, et al. Simulation of D3He fusion monoenergetic proton radiography of ICF implosions[J]. High Power Laser and Particle Beams, 2011, 23(1): 137-140 doi: 10.3788/HPLPB20112301.0137
    [11] Séguin F H, Frenje J A, Li C K, et al. Spectrometry of charged particles from inertial-confinement-fusion plasmas[J]. Review of Scientific Instruments, 2003, 74(2): 975-995. doi: 10.1063/1.1518141
    [12] Teng Jian, Zhang Tiankui, Wu Bo, et al. DD proton spectrum for diagnosing the areal density of imploded capsules on Shenguang III prototype laser facility[J]. Chinese Physics B, 2014, 23: 075207. doi: 10.1088/1674-1056/23/7/075207
    [13] Seguin F H, Sinenian N, Rosenberg M, et al. Advances in compact proton spectrometers for inertial-confinement fusion and plasma nuclear science[J]. Review of Scientific Instruments, 2012, 83: 10D908. doi: 10.1063/1.4732065
    [14] Zhang Xing, Zheng Jianhua, Yan Ji, et al. The application of proton spectrometers at the SG-III facility for ICF implosion areal density diagnostics[J]. High Power Laser Science and Engineering, 2015, 3: e28. doi: 10.1017/hpl.2015.29
    [15] 伍波, 苏明, 滕建, 等. 内爆初级质子能谱直接测量方法[J]. 强激光与粒子束, 2014, 26:122002. (Wu Bo, Su Ming, Teng Jian, et al. Directly measuring DD-produced proton spectra in ICF implosion[J]. High Power Laser and Particle Beams, 2014, 26: 122002 doi: 10.11884/HPLPB201426.122002
  • 加载中
图(6)
计量
  • 文章访问数:  771
  • HTML全文浏览量:  319
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-18
  • 修回日期:  2022-03-14
  • 网络出版日期:  2022-03-21
  • 刊出日期:  2022-05-15

目录

    /

    返回文章
    返回