留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SPRR-300研究堆随堆辐照石墨的中子辐照效应

郑健 闫占峰 王浩 冯琦杰 刘显坤 刘晓 王姝驭 周韦 钱达志

郑健, 闫占峰, 王浩, 等. SPRR-300研究堆随堆辐照石墨的中子辐照效应[J]. 强激光与粒子束, 2022, 34: 056002. doi: 10.11884/HPLPB202234.210511
引用本文: 郑健, 闫占峰, 王浩, 等. SPRR-300研究堆随堆辐照石墨的中子辐照效应[J]. 强激光与粒子束, 2022, 34: 056002. doi: 10.11884/HPLPB202234.210511
Zheng Jian, Yan Zhanfeng, Wang Hao, et al. Neutron irradiation effects of graphite serving in SPRR-300 reactor[J]. High Power Laser and Particle Beams, 2022, 34: 056002. doi: 10.11884/HPLPB202234.210511
Citation: Zheng Jian, Yan Zhanfeng, Wang Hao, et al. Neutron irradiation effects of graphite serving in SPRR-300 reactor[J]. High Power Laser and Particle Beams, 2022, 34: 056002. doi: 10.11884/HPLPB202234.210511

SPRR-300研究堆随堆辐照石墨的中子辐照效应

doi: 10.11884/HPLPB202234.210511
基金项目: 国防科工局核能开发项目
详细信息
    作者简介:

    郑 健,latent89@hotmail.com

  • 中图分类号: TL342

Neutron irradiation effects of graphite serving in SPRR-300 reactor

  • 摘要: 随SPRR-300研究堆约30 a的长时间运行,位于活性区附近的石墨箱体经历了长期的中子辐照。在长期服役的石墨箱体上取样,研究了其热学、力学以及微观结构变化,并与商用IG110,NG-CT-10石墨进行了对比。研究结果表明,经长时间低剂量率的中子辐照后,SPRR-300堆内随堆辐照石墨的晶格中出现了明显的辐照损伤缺陷,这些缺陷主要为位错环、层错、孔洞和微裂纹等,并出现了一定程度的非晶化。这些辐照损伤缺陷直接或间接地引起了石墨热学、力学性能的变化,主要表现为热膨胀系数、热扩散系数、抗压强度和抗弯强度的下降以及弯曲弹性模量的上升。
  • 图  1  3种石墨30 ℃~600 ℃下长度方向上的形变

    Figure  1.  Deformation in length of three types of graphite in the temperature range of measurement

    图  2  3种石墨30 ℃~300 ℃下热扩散系数

    Figure  2.  Thermal diffusivity of three types of graphite in the temperature range of measurement

    图  3  3种石墨的X射线衍射测量结果

    Figure  3.  XRD results of three types of graphite

    图  4  300#石墨的SEM照片

    Figure  4.  SEM images of the 300# graphite

    图  5  IG110和NG-CT-10石墨原始试样的SEM照片

    Figure  5.  SEM images of the as-received IG110 and NG-CT-10 graphite

    图  6  300#石墨TEM低倍照片

    Figure  6.  Low-magnification TEM images of the 300# graphite

    图  7  300#石墨的TEM样品高倍表征

    Figure  7.  High-magnification TEM images of the 300# graphite

    图  8  IG110石墨STEM明场像照片

    Figure  8.  Overall STEM bright field images of the IG110 graphite

    图  9  IG110石墨的选区电子衍射花样和不同区域的高分辨图片

    Figure  9.  The SAED pattern and different zones of the IG110 graphite

    图  10  NG-CT-10石墨TEM样品的整体STEM明场像照片和局部放大片层及孔洞结构

    Figure  10.  The overall STEM bright field image and the local high-magnification image,layers and voids of the NG-CT-10 graphite

    图  11  NG-CT-10石墨的选区电子衍射花样和不同区域的高分辨图片

    Figure  11.  SAED pattern and the HRTEM images and different zones of the NG-CT-10 graphite

    表  1  3种石墨不同温度段的热膨胀系数

    Table  1.   Coefficients of thermal expansion of three types of graphite in the temperature range of measurement

    temperature/℃coefficient of thermal expansion/10−6
    300#IG110NG-CT-10
    30~100 2.942 6 4.100 5 4.747 9
    100~200 3.436 7 4.790 1 4.767 7
    200~300 2.987 9 5.221 0 4.760 1
    300~400 2.546 4 5.371 4 4.966 0
    400~500 2.306 4 5.316 3 4.676 7
    500~600 1.760 3 5.232 2 4.810 1
    下载: 导出CSV

    表  2  3组石墨的抗压强度

    Table  2.   Compression strength of three types of graphite

    graphitecompression strength/MPa
    sample 1sample 2sample 3averagestandard deviation
    300#63.376.16166.88.1
    IG11086.487.489.487.71.5
    NG-CT-10102.999.7103.7102.12.1
    下载: 导出CSV

    表  3  3组石墨的抗弯强度

    Table  3.   Flexural strength of three types of graphite

    graphiteflexural strength/MPa
    sample 1sample 2sample 3averagestandard deviation
    300#43.4544.8251.846.74.5
    IG11067.6170.8268.3968.91.7
    NG-CT-1081.5383.0179.7381.41.6
    下载: 导出CSV

    表  4  3组石墨的弯曲弹性模量

    Table  4.   Modulus of elasticity in flexure of three types of graphite

    graphitemodulus of elasticity in flexure/GPa
    sample 1sample 2sample 3averagestandard deviation
    300#29.524.631.528.53.6
    IG11022.328.329.626.73.9
    NG-CT-1021.123.621.822.11.3
    下载: 导出CSV
  • [1] Campbell A A, Burchell T D. Radiation effects in graphite[M]. Amsterdam: Elsevier Ltd, 2020.
    [2] 唐凤平, 刘耀光, 杨万奎, 等. 300#研究堆安全棒中子注量率计算中的减方差方法对比及应用[J]. 原子能科学技术, 2014, 48(s1):149-154. (Tang Fengping, Liu Yaoguang, Yang Wankui, et al. Comparison and application of variance reduction method employed in neutron fluence rate calculation for safety rod of SPRR-300[J]. Atomic Energy Science and Technology, 2014, 48(s1): 149-154
    [3] Kelly B T, Jones D, James A. Irradiation damage to pile grade graphite at 450 ℃[J]. Journal of Nuclear Materials, 1962, 7(3): 279-291.
    [4] Burchell T D, Snead L L. The effect of neutron irradiation damage on the properties of grade NBG-10 graphite[J]. Journal of Nuclear Materials, 2007, 371(1/3): 18-27.
    [5] Heijna M C R, de Groot S, Vreeling J A. Comparison of irradiation behaviour of HTR graphite grades[J]. Journal of Nuclear Materials, 2017, 492: 148-156.
    [6] Kelly B, Marsden B, Hall K, et al. Irradiation damage in graphite due to fast neutrons in fission and fusion systems[R]. IAEA-TECDOC-1154, 2000.
    [7] Tang Z, Hasegawa M, Shimamura T, et al. Stable vacancy clusters in neutron-irradiated graphite: evidence for aggregations with a magic number[J]. Physical Review Letters, 1999, 82(12): 2532-2535.
    [8] Heggie M I, Suarez-Martinez I, Davidson C, et al. Buckle, ruck and tuck: a proposed new model for the response of graphite to neutron irradiation[J]. Journal of Nuclear Materials, 2011, 413(3): 150-155.
    [9] 邹彦文, 杜军, 张晓平. 国产部分细颗粒石墨的辐照行为[J]. 机械工程材料, 2001, 25(10):10-11,27. (Zou Yanwen, Du Jun, Zhang Xiaoping. Irradiation performance of graphite made in China[J]. Materials for Mechanical Engineering, 2001, 25(10): 10-11,27 doi: 10.3969/j.issn.1000-3738.2001.10.004
    [10] 张宝亮. 核石墨的离子辐照效应及熔盐浸渗特性研究[D]. 济南: 山东大学, 2015

    Zhang Baoliang. Ion irradiation effects and molten salt impregnation property of nuclear graphite[D]. Ji’nan: Shandong University, 2015
    [11] 张宁, 张鑫, 杨爱香, 等. 质子束辐照单层石墨烯的损伤效应[J]. 物理学报, 2017, 66(2):026103. (Zhang Ning, Zhang Xin, Yang Aixiang, et al. Damage effects of proton beam irradiation on single layer graphene[J]. Acta Physica Sinica, 2017, 66(2): 026103 doi: 10.7498/aps.66.026103
    [12] 杨万奎, 曾和荣, 冷军, 等. 300#研究堆首炉中央孔道中子通量密度计算[J]. 强激光与粒子束, 2012, 24(12):3001-3005. (Yang Wankui, Zeng Herong, Leng Jun, et al. Neutron flux calculation for central channel in first cycle of SPRR-300[J]. High Power Laser and Particle Beams, 2012, 24(12): 3001-3005
    [13] Telling R H, Heggie M I. Radiation defects in graphite[J]. Philosophical Magazine, 2007, 87(31): 4797-4846.
    [14] Snead L L, Burchell T D. Thermal conductivity degradation of graphites due to nuetron irradiation at low temperature[J]. Journal of Nuclear Materials, 1995, 224(3): 222-229.
    [15] Zhou Z, Bouwman W G, Schut H, et al. Interpretation of X-ray diffraction patterns of (nuclear) graphite[J]. Carbon, 2014, 69: 17-24.
    [16] Krishna R, Wade J, Jones A N, et al. An understanding of lattice strain, defects and disorder in nuclear graphite[J]. Carbon, 2017, 124: 314-333.
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  622
  • HTML全文浏览量:  235
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-23
  • 修回日期:  2022-03-11
  • 录用日期:  2022-03-18
  • 网络出版日期:  2022-03-24
  • 刊出日期:  2022-05-15

目录

    /

    返回文章
    返回