留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固定换热面积的回热器优化设计研究

高娇 王少华 黄洪文

高娇, 王少华, 黄洪文. 固定换热面积的回热器优化设计研究[J]. 强激光与粒子束, 2022, 34: 056010. doi: 10.11884/HPLPB202234.210521
引用本文: 高娇, 王少华, 黄洪文. 固定换热面积的回热器优化设计研究[J]. 强激光与粒子束, 2022, 34: 056010. doi: 10.11884/HPLPB202234.210521
Gao Jiao, Wang Shaohua, Huang Hongwen. Investigation into optimum design of recuperator at a confirmed heat transfer area[J]. High Power Laser and Particle Beams, 2022, 34: 056010. doi: 10.11884/HPLPB202234.210521
Citation: Gao Jiao, Wang Shaohua, Huang Hongwen. Investigation into optimum design of recuperator at a confirmed heat transfer area[J]. High Power Laser and Particle Beams, 2022, 34: 056010. doi: 10.11884/HPLPB202234.210521

固定换热面积的回热器优化设计研究

doi: 10.11884/HPLPB202234.210521
基金项目: 中国工程物理研究院创新发展基金培育项目(PY20210013)
详细信息
    作者简介:

    高 娇,J.Gao@caep.cn

  • 中图分类号: TL33

Investigation into optimum design of recuperator at a confirmed heat transfer area

  • 摘要: 为探究印刷电路板换热器(PCHE)Z型通道中超临界CO2的换热特性,在换热面积固定的前提下指导回热器优化设计,采用数值模拟方法对CO2-CO2耦合换热的局部和整体特性进行了分析,通过CFD计算得到典型PCHE结构和典型工况下回热器的换热特性,与实验结果进行对比,验证计算模型。并利用此模型计算具有相同换热面积、不同通道结构的回热器的局部和整体换热性能,厘清结构参数对换热性能的影响规律。研究表明,计算结果与实验结果吻合,当通道夹角从110°增加至115°时换热系数出现最大幅度的下降,根据不同的设计需求,最佳的夹角范围为110°~120°。
  • 图  1  回热器单元结构

    Figure  1.  Geometry model of the recuperator unit

    图  2  回热器单元网格划分

    Figure  2.  Mesh of the recuperator unit

    图  3  网格无关性验证

    Figure  3.  Mesh independence test

    图  4  回热器中CO2温度变化趋势

    Figure  4.  Temperaturevariation trend of CO2 in recuperator

    图  5  换热系数对比

    Figure  5.  Comparison of heat transfer coefficient

    图  6  换热效率对比

    Figure  6.  Comparison of heat transfer efficiency

    图  7  回热器中CO2压力变化趋势

    Figure  7.  Temperature variation trend of CO2 in recuperator

    图  8  压降对比

    Figure  8.  Comparison of pressure drop

    表  1  回热器测试件结构参数

    Table  1.   Geometry information of the test recuperator

    channel diameter/mmchannel included angle/(°)pitch size/mmplate No.channel No. at each platepitch No.
    hot side1.51159302760
    cold side1.511593127
    下载: 导出CSV

    表  2  换热性能计算结果与实验结果对比

    Table  2.   Comparison of the heat transfer performance between simulation and tests

    conditionTh,i/KTh,o/Kph/MPaTc,i/KTc,o/Kpc/MPaη/%
    case1test699.45369.158.4357.75610.8519.395.2
    parallel699.45362.788.4357.75617.4819.397.2
    stagered699.45362.758.4357.75617.6819.397.3
    case2test705.15363.257.6355.45601.8520.694.2
    simulation705.15360.437.6355.45619.9520.698.2
    下载: 导出CSV
  • [1] Crespi F, Gavagnin G, Sánchez D, et al. Supercritical carbon dioxide cycles for power generation: a review[J]. Applied Energy, 2017, 195: 152-183. doi: 10.1016/j.apenergy.2017.02.048
    [2] Liu Yaping, Wang Ying, Huang Diangui. Supercritical CO2 Brayton cycle: a state-of-the-art review[J]. Energy, 2019, 189: 115900. doi: 10.1016/j.energy.2019.115900
    [3] Wu Pan, Ma Yunduo, Gao Chuntian, et al. A review of research and development of supercritical carbon dioxide Brayton cycle technology in nuclear engineering applications[J]. Nuclear Engineering and Design, 2020, 368: 110767. doi: 10.1016/j.nucengdes.2020.110767
    [4] Zhao Yongming, Zhao Lifeng, Wang Bo, et al. Thermodynamic analysis of a novel dual expansion coal-fueled direct-fired supercritical carbon dioxide power cycle[J]. Applied Energy, 2018, 217: 480-495. doi: 10.1016/j.apenergy.2018.02.088
    [5] White M T, Bianchi G, Chai L, et al. Review of supercritical CO2 technologies and systems for power generation[J]. Applied Thermal Engineering, 2021, 185: 116447. doi: 10.1016/j.applthermaleng.2020.116447
    [6] Nikitin K, Kato Y, Ngo L. Printed circuit heat exchanger thermal–hydraulic performance in supercritical CO2 experimental loop[J]. International Journal of Refrigeration, 2006, 29(5): 807-814. doi: 10.1016/j.ijrefrig.2005.11.005
    [7] Kim I H, No H C, Lee J I, et al. Thermal hydraulic performance analysis of the printed circuit heat exchanger using a helium test facility and CFD simulations[J]. Nuclear Engineering and Design, 2009, 239(11): 2399-2408. doi: 10.1016/j.nucengdes.2009.07.005
    [8] Kim I H, No H C. Thermal hydraulic performance analysis of a printed circuit heat exchanger using a helium-water test loop and numerical simulations[J]. Applied Thermal Engineering, 2011, 31(17/18): 4064-4073.
    [9] Kim S G, Lee Y, Ahn Y, et al. CFD aided approach to design printed circuit heat exchangers for supercritical CO2 Brayton cycle application[J]. Annals of Nuclear Energy, 2016, 92: 175-185.
    [10] Chen Minghui, Sun Xiaodong, Christensen R N, et al. Pressure drop and heat transfer characteristics of a high-temperature printed circuit heat exchanger[J]. Applied Thermal Engineering, 2016, 108: 1409-1417. doi: 10.1016/j.applthermaleng.2016.07.149
    [11] Yoon S H, No H C, Kang G B. Assessment of straight, zigzag, S-shape, and airfoil PCHEs for intermediate heat exchangers of HTGRs and SFRs[J]. Nuclear Engineering and Design, 2014, 270: 334-343. doi: 10.1016/j.nucengdes.2014.01.006
    [12] 高毅超, 夏文凯, 龙颖, 等. 管径和转折角对Z型PCHE换热及压降影响的研究[J]. 热能动力工程, 2019, 34(2):94-100. (Gao Yichao, Xia Wenkai, Long Ying, et al. Study on the effects of channel width and fin angle on heat transfer and pressure drop of zigzag PCHE[J]. Journal of Engineering for Thermal Energy and Power, 2019, 34(2): 94-100
    [13] 张虎忠. 超临界CO2印刷电路板换热器性能研究[D]. 北京: 中国科学院工程热物理研究所, 2020

    Zhang Huzhong. Study on the thermal-hydraulic performance of printed circuit heat exchanger with supercritical carbon dioxide[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2020
    [14] Xiang Mengru, Guo Jingfeng, Huai Xiulan, et al. Thermal analysis of supercritical pressure CO2 in horizontal tubes under cooling condition[J]. The Journal of Supercritical Fluids, 2017, 130: 389-398. doi: 10.1016/j.supflu.2017.04.009
    [15] Ma Ting, Li Lei, Xu Xiangyang, et al. Study on local thermal–hydraulic performance and optimization of zigzag-type printed circuit heat exchanger at high temperature[J]. Energy Conversion and Management, 2015, 104: 55-66. doi: 10.1016/j.enconman.2015.03.016
    [16] Son S, Heo J Y, Lee J I. Prediction of inner pinch for supercritical CO2 heat exchanger using artificial neural network and evaluation of its impact on cycle design[J]. Energy Conversion and Management, 2018, 163: 66-73. doi: 10.1016/j.enconman.2018.02.044
    [17] Cui Xinying, Xiang Mengru, Guo Jiangfeng, et al. Analysis of coupled heat transfer of supercritical CO2 from the viewpoint of distribution coordination[J]. The Journal of Supercritical Fluids, 2019, 152: 104560. doi: 10.1016/j.supflu.2019.104560
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  581
  • HTML全文浏览量:  234
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-25
  • 修回日期:  2022-04-02
  • 网络出版日期:  2022-04-09
  • 刊出日期:  2022-05-15

目录

    /

    返回文章
    返回