留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚苯乙烯相对分子量对薄壁聚苯乙烯空心微球质量的影响

徐文婷 李洁 刘一杨 陈强 易勇 刘梅芳

徐文婷, 李洁, 刘一杨, 等. 聚苯乙烯相对分子量对薄壁聚苯乙烯空心微球质量的影响[J]. 强激光与粒子束, 2022, 34: 052002. doi: 10.11884/HPLPB202234.210557
引用本文: 徐文婷, 李洁, 刘一杨, 等. 聚苯乙烯相对分子量对薄壁聚苯乙烯空心微球质量的影响[J]. 强激光与粒子束, 2022, 34: 052002. doi: 10.11884/HPLPB202234.210557
Xu Wenting, Li Jie, Liu Yiyang, et al. Investigation into preparation of thin-walled polystyrene hollow microspheres for ICF[J]. High Power Laser and Particle Beams, 2022, 34: 052002. doi: 10.11884/HPLPB202234.210557
Citation: Xu Wenting, Li Jie, Liu Yiyang, et al. Investigation into preparation of thin-walled polystyrene hollow microspheres for ICF[J]. High Power Laser and Particle Beams, 2022, 34: 052002. doi: 10.11884/HPLPB202234.210557

聚苯乙烯相对分子量对薄壁聚苯乙烯空心微球质量的影响

doi: 10.11884/HPLPB202234.210557
基金项目: 国家自然科学基金项目(21875061,52073264);西南科技大学基金项目(18fksy0203,19fksy08)
详细信息
    作者简介:

    徐文婷,xuwenting0827@163.com

    通讯作者:

    易 勇,yiyong@swust.edu.cn

    刘梅芳,liumeifang@caep.cn

  • 中图分类号: TL639

Investigation into preparation of thin-walled polystyrene hollow microspheres for ICF

  • 摘要: 激光惯性约束聚变(ICF)作为探索受控核聚变的有效途径,有望获得清洁无污染的能源,而薄壁聚苯乙烯(PS)空心微球是ICF物理实验中亟需的一类微球。针对薄壁空心微球因径厚比(直径/壁厚)增大导致其在干燥、使用中易开裂的问题,研究了PS原料对薄壁微球质量的影响,探讨了其影响机制。结果表明:当油相PS质量分数为4%时,随着油相粘度增加,W1/O/W2复合乳粒稳定性逐渐提高;当油相质量分数不低于8%时,复合乳粒稳定性良好。PS原料对微球表面粗糙度影响较小,微球球形度和壁厚均匀性随初始油相粘度的增大而降低,在干燥过程中微球开裂率随原料力学性能提高而减小。在外水相中引入氟苯(FB)液滴,延缓固化速率,可减小油相粘度增加对微球球形度和壁厚均匀性的不利影响。
  • 图  1  PS空心微球的制备过程

    Figure  1.  Preparation process of PS hollow microspheres

    图  2  PS-1的复合乳粒的失稳行为

    Figure  2.  Instability of PS-1 compound droplets

    图  3  W1/O/W2复合乳粒失稳时间

    Figure  3.  Instable time of W1/O/W2 compound droplets

    图  4  PS微球直径分布

    Figure  4.  Diameter of PS hollow microspheres

    图  5  PS空心微球的表面粗糙度

    Figure  5.  Surface roughness of PS hollow microspheres

    图  6  乙醇置换后的PS空心微球

    Figure  6.  PS hollow microspheres after ethanol replacement

    图  7  不同原料PS微球

    Figure  7.  Different PS microspheres

    图  8  不同温度下12% PS-FB

    Figure  8.  12% PS-FB at different temperatures

    图  9  不同FB添加量的PS微球

    Figure  9.  FB addition amount of PS microspheres

    表  1  不同PS原料的分子量及分子量分布

    Table  1.   Molecular weight and distribution of different PS materials

    sampleMw /(kg·mol−1)Mn /(kg·mol−1)Mw/Mn
    PS-1206.079.62.6
    PS-2250.4119.32.1
    PS-3297.892.93.2
    PS-4356.9254.21.4
    下载: 导出CSV

    表  2  质量分数4%PS-FB油相粘度(25 ℃)

    Table  2.   Mass fraction 4% PS-FB oil phase viscosity at room temperature (25 ℃)

    sample viscosity /(mPa·s)
    PS-1 3.55
    PS-2 3.95
    PS-3 4.69
    PS-4 5.50
    下载: 导出CSV

    表  3  PS微球乙醇置换后上浮率和干燥过程开裂率

    Table  3.   Floating rate after ethanol replacement and the cracking rate during the drying process of PS microspheres

    samplemicrosphere
    uplifting rate/%
    cracking rate of uplifted
    microspheres during drying/%
    PS-1 90 62
    PS-2 91 51
    PS-3 90 47
    PS-4 90 40
    下载: 导出CSV

    表  4  不同PS原料力学性能

    Table  4.   Mechanical properties of different PS

    sampleelongation at fracture/%tensile strength/MPaYoung’s modulus/MPa
    PS-1 2.00 18.06 875.51
    PS-3 2.28 24.14 936.62
    PS-4 2.49 28.46 1076.38
    下载: 导出CSV

    表  5  油相与外水相水溶液界面张力

    Table  5.   Interfacial tension between oil phase and external water phase

    sample interfacial tension /(mN·m−1
    PS-1 7.58±0.05
    PS-2 8.36±0.19
    PS-3 8.66±0.13
    PS-4 8.02±0.36
    下载: 导出CSV
  • [1] 张民, 张正炜, 张艳红. 液滴微流控技术制备功能型微球的研究进展[J]. 高校化学工程学报, 2020, 34(5):1102-1112. (Zhang Min, Zhang Zhengwei, Zhang Yanhong. Research progress on functional microsphere preparation by droplet microfluidic technology[J]. Journal of Chemical Engineering of Chinese Universities, 2020, 34(5): 1102-1112 doi: 10.3969/j.issn.1003-9015.2020.05.002
    [2] Wang Jianmei, Wang Xueying, Li Yan, et al. Preparation and properties of magnetic polymer microspheres[J]. Polymer, 2020, 199: 122569. doi: 10.1016/j.polymer.2020.122569
    [3] 王月桐, 商珞然, 赵远锦. 基于液滴界面不稳定性的表面粗糙聚合物微球的制备及其细胞捕获应用[J]. 物理学报, 2020, 69:084701. (Wang Yuetong, Shang Luoran, Zhao Yuanjin. Surface-textured polymer microspheres generated through interfacial instabilities of microfluidic droplets for cell capture[J]. Acta Physica Sinica, 2020, 69: 084701 doi: 10.7498/aps.69.20200362
    [4] 高莎莎, 吴小军, 何智兵, 等. 激光惯性约束聚变靶制备技术研究进展[J]. 强激光与粒子束, 2020, 32:032001. (Gao Shasha, Wu Xiaojun, He Zhibing, et al. Research progress of fabrication techniques for laser inertial confinement fusion target[J]. High Power Laser and Particle Beams, 2020, 32: 032001
    [5] 门艳茹, 桑晓明, 杨贤金, 等. 惯性约束聚变靶丸的研究进展[J]. 材料导报, 2004, 18(s2):284-286,290. (Men Yanru, Sang Xiaoming, Yang Xianjin, et al. Research progress of target capsule for inertial confinement fusion[J]. Materials Review, 2004, 18(s2): 284-286,290
    [6] 张林, 涂海燕, 唐永健, 等. ICF靶PVA-PS双层空心微球的研制[J]. 高分子材料科学与工程, 1997, 13(s1):137-139. (Zhang Lin, Tu Haiyan, Tang Yongjian, et al. Fabrication of PVA-PS double-layered shells for ICF targtets[J]. Polymeric Materials Science and Engineering, 1997, 13(s1): 137-139
    [7] 许晓颖, 简科, 纪小宇. 靶丸用空心微球制备技术研究进展[J]. 硅酸盐学报, 2019, 47(12):1784-1791. (Xu Xiaoying, Jian Ke, Ji Xiaoyu. Research progress on preparation technology of hollow microspheres for targets[J]. Journal of the Chinese Ceramic Society, 2019, 47(12): 1784-1791
    [8] Arriaga L R, Amstad E, Weitz D A. Scalable single-step microfluidic production of single-core double emulsions with ultra-thin shells[J]. Lab on a Chip, 2015, 15(16): 3335-3340. doi: 10.1039/C5LC00631G
    [9] Nakano H, Fukuda T. Fabrication of a thin-walled plastic shell using emulsion technique[J]. Fusion Technology, 1999, 35(2): 189-193. doi: 10.13182/FST99-A11963920
    [10] 潘大伟, 杨璨, 李洁, 等. 聚α-甲基苯乙烯空心微球的开裂机理[J]. 高分子材料科学与工程, 2019, 35(4):47-51. (Pan Dawei, Yang Can, Li Jie, et al. Formation mechanisms of crack on surface of poly-alpha-methylstyrene shells[J]. Polymer Materials Science & Engineering, 2019, 35(4): 47-51
    [11] Pan Dawei, Huang Weixing, Chen Qiang, et al. Investigation of craze and cracks of polystyrene shells during drying process[J]. Fusion Science and Technology, 2018, 73(1): 59-67. doi: 10.1080/15361055.2017.1372678
    [12] Wagner H N R, Hühne C, Zhang J, et al. On the imperfection sensitivity and design of spherical domes under external pressure[J]. International Journal of Pressure Vessels and Piping, 2020, 179: 104015. doi: 10.1016/j.ijpvp.2019.104015
    [13] Gentekos D T, Sifri R J, Fors B P. Controlling polymer properties through the shape of the molecular-weight distribution[J]. Nature Reviews Materials, 2019, 4(12): 761-774. doi: 10.1038/s41578-019-0138-8
    [14] Liu Meifang, Liu Yiyang, Li Jie, et al. Improvement of sphericity of thick-walled polystyrene shell[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2015, 484: 463-470. doi: 10.1016/j.colsurfa.2015.08.031
    [15] Chen Qiang, Huang Yong, Liu Meifang, et al. Parabolic effects of viscosity on dispersion and stability of millimeter-scale W1/O/W2 double droplets for ICF polymer shells[J]. Journal of Dispersion Science and Technology, 2021,doi: 10.1080/01932691.2021.1883441.
    [16] Park J I, Saffari A, Kumar S, et al. Microfluidic synthesis of polymer and inorganic particulate materials[J]. Annual Review of Materials Research, 2010, 40: 415-443. doi: 10.1146/annurev-matsci-070909-104514
    [17] Liu Meifang, Chen Sufen, Qi Xiaobo, et al. Improvement of wall thickness uniformity of thick-walled polystyrene shells by density matching[J]. Chemical Engineering Journal, 2014, 241: 466-476. doi: 10.1016/j.cej.2013.08.120
    [18] Liu Meifang, Su Lin, Li Jie, et al. Investigation of spherical and concentric mechanism of compound droplets[J]. Matter and Radiation at Extremes, 2016, 1(4): 213-223. doi: 10.1016/j.mre.2016.07.002
    [19] Liu Meifang, Ai Xing, Liu Yiyang, et al. Fabrication of solid CH-CD multilayer microspheres for inertial confinement fusion[J]. Matter and Radiation at Extremes, 2021, 6: 025901. doi: 10.1063/5.0033103
    [20] Chen Qiang, Chen Sufen, Liu Meifang, et al. Influence of fluorobenzene mass transfer on the qualities of poly-α-methylstyrene shells[J]. RSC Advances, 2018, 8(7): 3687-3693. doi: 10.1039/C7RA09799A
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  566
  • HTML全文浏览量:  200
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-11
  • 修回日期:  2022-03-15
  • 录用日期:  2022-04-01
  • 网络出版日期:  2022-04-06
  • 刊出日期:  2022-05-15

目录

    /

    返回文章
    返回