留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

240 kJ模块化能库型脉冲放电电源研制

李松杰 赵娟 康传会 黄宇鹏 邓维军 肖金水 丁明军 李波 关键 毛傲华 李洪涛 鄂鹏 马勋

李松杰, 赵娟, 康传会, 等. 240 kJ模块化能库型脉冲放电电源研制[J]. 强激光与粒子束, 2022, 34: 095015. doi: 10.11884/HPLPB202234.210564
引用本文: 李松杰, 赵娟, 康传会, 等. 240 kJ模块化能库型脉冲放电电源研制[J]. 强激光与粒子束, 2022, 34: 095015. doi: 10.11884/HPLPB202234.210564
Li Songjie, Zhao Juan, Kang Chuanhui, et al. Development of a 240 kJ modularized pulsed power supply[J]. High Power Laser and Particle Beams, 2022, 34: 095015. doi: 10.11884/HPLPB202234.210564
Citation: Li Songjie, Zhao Juan, Kang Chuanhui, et al. Development of a 240 kJ modularized pulsed power supply[J]. High Power Laser and Particle Beams, 2022, 34: 095015. doi: 10.11884/HPLPB202234.210564

240 kJ模块化能库型脉冲放电电源研制

doi: 10.11884/HPLPB202234.210564
详细信息
    作者简介:

    李松杰,songjieli@126.com

    通讯作者:

    鄂 鹏,epeng@hit.edu.cn

    马 勋,13778053819@163.com

  • 中图分类号: TN782

Development of a 240 kJ modularized pulsed power supply

  • 摘要: 空间等离子体环境模拟与研究装置用于在地面模拟空间磁场和等离子体环境,需要在3.5 μH电感、0.8 mΩ电阻的环向场线圈负载上产生前沿130 μs、降流时间不大于1600 μs、峰值260 kA的脉冲电流,因此设计了一套模块化的电容器型放电电源。针对相对较小电感的负载,根据设计要求的放电波形和开关组件通流能力,考虑负载短路故障的情形,给出了保护电感、优化的模块数量等回路参数计算方法。进一步采用传输电缆作为能量传输,同时将电缆寄生电感作为保护电感的方案,研制了一套由4个模块组成的放电电源。研究结果表明,本文给出的电路理论计算结果与设计要求一致,放电试验进一步证明电源设计满足设计放电波形要求。
  • 图  1  典型负载电流波形

    Figure  1.  Typical current waveform required for the load

    图  2  电源系统电路原理图

    Figure  2.  Schematic of the PPS

    图  3  负载短路时电路原理图

    Figure  3.  Schematic of the PPS when the load is short-circuited

    图  4  电源放电波形仿真

    Figure  4.  Simulated output current waveforms of the PPS

    图  5  电源系统组成

    Figure  5.  System composition of the PPS

    图  6  模块主要功能电路原理及实物

    Figure  6.  Basic circuit diagram and photograph of the discharge module

    图  7  电源仿真波形

    Figure  7.  Simulated output current waveform of the PPS and discharge module

    图  8  电源负载短路时仿真波形

    Figure  8.  Simulated output current waveform when the load is short-circuited

    图  9  电源测试现场

    Figure  9.  Photographs of the test

    图  10  电源整机对负载放电实验结果

    Figure  10.  Discharge current waveform of the PPS and discharge module

    表  1  晶闸管器件主要额定参数

    Table  1.   Typical maximum ratings of the thyristor switch

    maximum current/
    kA(3 ms pulse width)
    critical rate of decrease of commutating on-state current (di/dt)/(kA·μs−1)
    (duration between 10%~50% of maximum current)
    1203
    下载: 导出CSV
  • [1] Stenzel R L, Gekelman W. Laboratory experiments on current sheet disruptions, double layers turbulence and reconnection[M]//Kundu M R, Holman G D. Unstable Current Systems and Plasma Instabilities in Astrophysics. Dordrecht: Springer, 1985.
    [2] Melnik P A, Bushnell A H, Sieck P E, et al. Design of 5.5MJ charge dump power supply for the PPPL FLARE experiment[C]//2016 IEEE International Power Modulator and High Voltage Conference (IPMHVC). 2016.
    [3] Gekelman W, De Haas T, Daughton W, et al. Pulsating magnetic reconnection driven by three-dimensional flux-rope interactions[J]. Physical Review Letters, 2016, 116: 235101. doi: 10.1103/PhysRevLett.116.235101
    [4] E Peng, Guan Jian, Ling Wenbin, et al. An 18.3 MJ charging and discharging pulsed power supply system for the Space Plasma Environment Research Facility (SPERF): Modular design method and component selection[J]. Review of Scientific Instruments, 2021, 92: 034709. doi: 10.1063/5.0036923
    [5] E Peng, Guan Jian, Jin Chenggang, et al. An 18.3 MJ charging and discharging pulsed power supply system for the Space Plasma Environment Research Facility (SPERF): the subsystem for the magnetopause shape control coils[J]. Review of Scientific Instruments, 2021, 92: 064709. doi: 10.1063/5.0052725
    [6] Wu Biao. Vlasov equation of plasma in magnetic field[J]. Journal of Physics A: Mathematical and General, 1999, 32(31): 5835-5844. doi: 10.1088/0305-4470/32/31/308
    [7] Jorling J, Hofmann J, Weise T H G G, et al. 49 MJ pulsed power facility to produce high magnetic fields[C]//2007 16th IEEE International Pulsed Power Conference. 2007.
    [8] Portugall O, Lecouturier F, Marquez J, et al. Pulsed magnetic fields in Toulouse – past, present and future[J]. Physica B: Condensed Matter, 2001, 294/295: 579-584. doi: 10.1016/S0921-4526(00)00724-9
    [9] Debray F, Frings P. State of the art and developments of high field magnets at the "Laboratoire National des Champs Magnétiques Intenses"[J]. Comptes Rendus Physique, 2013, 14(1): 2-14. doi: 10.1016/j.crhy.2012.11.002
    [10] Perenboom J A A J, Maan J C, Van Breukelen M R, et al. Developments at the high field magnet laboratory in Nijmegen[J]. Journal of Low Temperature Physics, 2013, 170(5/6): 520-530.
    [11] Sitzman A, Surls D, Mallick J. Design, construction, and testing of an inductive pulsed-power supply for a small railgun[J]. IEEE Transactions on Magnetics, 2007, 43(1): 270-274. doi: 10.1109/TMAG.2006.887685
    [12] Lee B, An S, Kim S H, et al. Operation of a 2.4-MJ pulsed power system for railgun[J]. IEEE Transactions on Plasma Science, 2014, 42(10): 2886-2890. doi: 10.1109/TPS.2013.2295225
    [13] Ding Hongfa, Jiang Chengxi, Ding Tonghai, et al. Prototype test and manufacture of a modular 12.5 MJ capacitive pulsed power supply[J]. IEEE Transactions on Applied Superconductivity, 2010, 20(3): 1676-1680. doi: 10.1109/TASC.2009.2039785
    [14] Lü Yiliang, Li Liang. Design on the protection inductor for the capacitor bank of Wuhan Pulsed High Magnetic Field facility[C]//2008 International Conference on Electrical Machines and Systems. 2008.
    [15] 彭波, 林福昌, 黄福勇, 等. 储能电容器组保护电感结构与保护方法的研究[J]. 高电压器, 2012, 48(6):48-52,55. (Peng Bo, Lin Fuchang, Huang Fuyong, et al. Protection inductor structure and protection methods for pulsed capacitor banks[J]. High Voltage Apparatus, 2012, 48(6): 48-52,55

    Peng Bo, Lin Fuchang, Huang Fuyong, et al. Protection inductor structure and protection methods for pulsed capacitor banks[J]. High Voltage Apparatus, 2012, 48(6): 48-52, 55
    [16] 韩旻, 邹晓兵, 张贵新, 等. 脉冲功率技术基础[M]. 北京: 清华大学出版社, 2020

    Hank Min, Zou Xiaobing, Zhang Guixin. Pulse power technology base[M]. Beijing: Tsinghua University Press, 2010
    [17] 蒋成玺. 脉冲强磁场电源系统设计及实现[D]. 武汉: 华中科技大学, 2013

    Jiang Chengxi. Design and realization of pulse power supply system for pulsed high magnetic field[D]. Wuhan: Huazhong University of Science and Technology, 2013
    [18] Saxena A K, Rawool A M, Kaushik T C. Crowbar scheme based on plasma motion for pulsed power applications[J]. IEEE Transactions on Plasma Science, 2013, 41(10): 3058-3062. doi: 10.1109/TPS.2013.2279850
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  563
  • HTML全文浏览量:  179
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-20
  • 修回日期:  2022-05-16
  • 网络出版日期:  2022-05-21
  • 刊出日期:  2022-06-17

目录

    /

    返回文章
    返回