留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dragon程序在金属燃料铅铋快堆堆芯计算中的应用与偏差分析

张亮 孙胜 孙寿华 杨文华

张亮, 孙胜, 孙寿华, 等. Dragon程序在金属燃料铅铋快堆堆芯计算中的应用与偏差分析[J]. 强激光与粒子束, 2022, 34: 056005. doi: 10.11884/HPLPB202234.220001
引用本文: 张亮, 孙胜, 孙寿华, 等. Dragon程序在金属燃料铅铋快堆堆芯计算中的应用与偏差分析[J]. 强激光与粒子束, 2022, 34: 056005. doi: 10.11884/HPLPB202234.220001
Zhang Liang, Sun Sheng, Sun Shouhua, et al. Preliminary application of neutronics calculation in LFR reactor with metallic fuel using dragon code[J]. High Power Laser and Particle Beams, 2022, 34: 056005. doi: 10.11884/HPLPB202234.220001
Citation: Zhang Liang, Sun Sheng, Sun Shouhua, et al. Preliminary application of neutronics calculation in LFR reactor with metallic fuel using dragon code[J]. High Power Laser and Particle Beams, 2022, 34: 056005. doi: 10.11884/HPLPB202234.220001

Dragon程序在金属燃料铅铋快堆堆芯计算中的应用与偏差分析

doi: 10.11884/HPLPB202234.220001
基金项目: 四川省青年科技创新研究团队项目(2022JDTD0006)
详细信息
    作者简介:

    张 亮,552181112@qq.com

    通讯作者:

    孙寿华,1319049712@qq.com

  • 中图分类号: TL352

Preliminary application of neutronics calculation in LFR reactor with metallic fuel using dragon code

  • 摘要: 铅铋合金或铅冷却快堆(LFR)是具有良好应用前景的第四代先进核能系统之一。针对环形芯体金属燃料(UZr,UPuZr)LFR的燃料组件与堆芯,利用Dragon/Donjon程序开展中子学计算,获得了基于ENDF/B 8.0库的172群和295群多群中子数据库、输运方法(SP3)和扩散方法(MCFD)的结果及其与蒙卡程序RMC的偏差。采用SP3算法针对UZr燃料得到的keff偏差小于550×10−5;对于UPuZr燃料采用MCFD算法得到的keff偏差小于−700×10−5。控制棒组件价值的偏差小于7.6%;172群和295群库的结果基本无差异。应用SP3算法的燃料组件功率偏差小于±6.0%;SP3算法的偏差小于MCFD的。结果证明,Dragon/Donjon程序在金属燃料铅铋快堆物理分析中具有可行性。
  • 图  1  铅铋堆芯布置图

    Figure  1.  Core arrangement of an LFR core

    图  2  燃料组件结构图

    Figure  2.  Geometric structure of fuel assembly

    图  3  用于群常数制作的组件计算模型

    Figure  3.  Calculation models for assembly group constant computation

    图  4  Dragon/Donjon程序中的LFR堆芯计算模型示意图

    Figure  4.  Calculation model of an LFR core with Dragon/Donjon code

    FA: fuel pellet of fuel assembly; GC: gas chamber of fuel assembly; AR: axial reflector of fuel assembly; CR: B4C pellet section of control rod assembly; LBE; assembly section with empty HEXCAN and coolant. I/O: inner/outer fuel zone; U/L: upper/lower part of core.

    图  5  Dragon/RMC程序得到的UZr燃料组件中子能谱

    Figure  5.  Neutron spectrum of UZr fuel in a fuel assembly using Dragon or RMC code

    表  1  燃料组件、径向反射层组件和控制棒组件的设计参数(293 K)

    Table  1.   Designed dimensions of fuel, radial reflector and control rod assemblies (293 K)

    itemnumber of
    rods in
    assembly
    Hexcan outer
    flat-to-flat
    size/mm
    Hexcan wall
    thickness/mm
    pin
    pitch/mm
    pin cladding
    inner
    diameter/mm
    pin cladding
    outer
    diameter/mm
    pin cladding
    thickness/mm
    fuel assembly 271 173 4.5 9.80 7.37 8.500 0.565
    radial reflector assembly 91 173 4.5 16.90 15.838
    CR assembly 31 173 4.5 22.77 18.00 19.000 0.500
    item pin cladding
    outer diameter,
    including wrap
    wires/mm
    fuel
    pellet
    outer
    diameter/mm
    fuel pellet
    inner hole
    diameter/mm
    absorber
    pellet
    diameter/mm
    rod body
    outer diameter
    of CR
    assembly/mm
    rod body
    wall thickness
    of CR
    assembly/mm
    assembly
    (section)
    axial
    length/m
    fuel assembly 8.584 7.37 4.944 upper reflector section: 0.5
    gas chamber section: 1.1
    fuel pellet section: 0.9
    lower reflector section: 0.5
    radial reflector assembly 3.0
    CR assembly 17 149 2 absorber pellet section:1.0
    lower reflector section: 0.5
    LBE section: 1.5
    下载: 导出CSV

    表  2  并群后的24群能群结构

    Table  2.   24 group energy structure for condensation

    group
    number
    upper energy limit
    of 172-group lib/eV
    upper energy limit
    of 295-group lib/eV
    1 19.6400×106 19.6400×106
    2 10.0000×106 10.0000×106
    3 6.0653×106 6.0653×106
    4 3.0119×106 3.3287×106
    5 2.0190×106 1.9014×106
    6 1.2246×106 1.2870×106
    7 8.2085×105 8.6001×105
    8 4.9787×105 4.9400×105
    9 3.0197×105 3.2065×105
    10 1.2277×105 1.6506×105
    11 1.1109×105 1.1562×105
    12 6.7379×104 6.7379×104
    13 3.6979×104 3.6979×104
    14 1.6616×104 2.2699×104
    15 1.5034×104 1.4900×104
    16 9.1188×103 9.1188×103
    17 5.0045×103 5.0045×103
    18 3.3546×103 3.4811×103
    19 1.5073×103 1.8118×103
    20 1.2341×103 1.1347×103
    21 6.7729×102 6.7729×102
    22 3.7170×102 4.1909×102
    23 3.0432×102 2.9592×102
    24 1.3674×102 1.4666×102
    lower energy limit/eV 1.0000×10−5
    下载: 导出CSV

    表  3  铅铋堆燃料组件中子无限增殖因子的计算结果

    Table  3.   Calculation results of kinf in an LFR fuel assembly

    solutionkinf difference with RMC/10−5
    UZr fuel
    assembly
    UPuZr fuel
    assembly
    UO2 fuel
    assembly
    UZr fuel
    assembly
    UPuZr fuel
    assembly
    UO2 fuel
    assembly
    RMC code 1.33254 1.35197 1.23743
    Dragon code (172-group lib) 1.31722 1.33137 1.22903 −873 −1144 −552
    Dragon code (295-group lib) 1.31272 1.32382 1.22524 −1133 −1573 −804
    下载: 导出CSV

    表  4  铅铋堆燃料组件冷却剂密度效应的计算结果

    Table  4.   Calculation results of coolant density effect in an LFR fuel assembly

    solutionreactivity change of coolant density effect, ΔρLBE/10−5relative difference/%
    UZr fuel
    assembly
    UPuZr fuel
    assembly
    UO2 fuel
    assembly
    UZr fuel
    assembly
    UPuZr fuel
    assembly
    UO2 fuel
    assembly
    RMC code 265 383 214
    Dragon code (172-group lib) 247 374 224 −6.8 −2.3 4.7
    Dragon code (295-group lib) 248 375 223 −6.4 −2.1 4.2
    下载: 导出CSV

    表  5  铅铋堆燃料组件燃料多普勒系数的计算结果

    Table  5.   Calculation results of fuel Doppler coefficient in an LFR fuel assembly

    solutionfuel Doppler coefficient, kD/10−5relative difference/%
    UZr fuel
    assembly
    UPuZr fuel
    assembly
    UO2 fuel
    assembly
    UZr fuel
    assembly
    UPuZr fuel
    assembly
    UO2 fuel
    assembly
    RMC code −297 −380 −743
    Dragon code (172-group lib) −280 −359 −715 −5.7 −5.5 −3.8
    Dragon code (295-group lib) −300 −378 −725 1.0 −0.5 −2.4
    下载: 导出CSV

    表  6  Dragon/Donjon程序得到的铅铋堆keff及其计算偏差(293 K)

    Table  6.   keff and its discrepancy of a LFR core using Dragon/Donjon code (293 K)

    solutionkeff difference with RMC/10−5
    LFR core with
    UZr fuel
    LFR core with
    UPuZr fuel
    LFR core with
    UZr fuel
    LFR core with
    UPuZr fuel
    RMC code 1.02934 1.03132
    172-group lib MCFD 1.04436 1.03005 1398 −120
    SP3 1.03517 1.01923 548 −1151
    295-group lib MCFD 1.04139 1.02432 1124 −663
    SP3 1.03102 1.01247 159 −1805
    下载: 导出CSV

    表  7  Dragon/Donjon程序得到的铅铋堆控制棒组件价值及其计算偏差

    Table  7.   Discrepancy of control rod worth of an LFR core using Dragon/Donjon code

    solutionCR worth/10−5 relative difference/%
    LFR core with
    UZr fuel
    LFR core with
    UPuZr fuel
    LFR core with
    UZr fuel
    LFR core with
    UPuZr fuel
    RMC code −10570 −10022
    172-group lib MCFD −10459 −10250 −1.1 2.3
    SP3 −11056 −10787 4.6 7.6
    295-group lib MCFD −10405 −10235 −1.6 2.1
    SP3 −10985 −10743 3.9 7.2
    下载: 导出CSV

    表  8  Dragon/Donjon程序得到的铅铋堆燃料组件功率的计算偏差(D/R-1)

    Table  8.   Discrepancy of fuel assembly power of an LFR core using Dragon/Donjon code (D/R-1)

    XS librarymethodrelative difference of LFR core with UZr fuel/% relative difference of LFR core with UPuZr fuel/%
    MaxMinRMSMaxMinRMS
    CR-P and CR-S
    withdrawn
    172-group lib MCFD 1.6 −4.4 1.7 1.7 −4.8 1.9
    SP3 5.5 −1.5 1.8 3.9 −1.3 1.4
    295-group lib MCFD 3.0 −8.9 3.7 2.7 −8.3 3.4
    SP3 1.4 −3.9 1.4 1.3 −3.7 1.3
    CR-P at critical
    location;
    CR-S withdrawn
    172-group lib MCFD 3.2 −5.4 2.3 3.1 −5.9 2.4
    SP3 5.1 −1.7 1.7 3.9 −1.9 1.3
    295-group lib MCFD 4.7 −9.9 4.3 4.3 −9.2 4.0
    SP3 2.2 −4.7 1.9 2.1 −4.9 1.8
    下载: 导出CSV
  • [1] Carmack J. Fuel development for advanced reactors[R]. Washington DC: Department of Energy, 2016.
    [2] Waltar A E, Todd D R, Tsvetkov P V. Fast spectrum reactors[M]. New York, USA: Springer, 2012.
    [3] Mum J W, Kin H J, Sweidan F B, et al. Metallic fuel performance evaluation for micro lead cooled fast reactor[C]//Proceedings of Transactions of the Korean Nuclear Society Virtual Spring Meeting. 2020.
    [4] 邹小亮, 柏云清, 王明煌, 等. 铅冷行波堆堆芯物理设计及中子学特性分析[J]. 核科学与工程, 2018, 38(4):590-597. (Zou Xiaoliang, Bai Yunqing, Wang Minghuang, et al. Core neutronics design and analysis for the Pb-cooled traveling wave reactor[J]. Nuclear Science and Engineering, 2018, 38(4): 590-597 doi: 10.3969/j.issn.0258-0918.2018.04.009
    [5] Nuclear Energy Agency. Benchmark for neutronic analysis of sodium-cooled fast reactor cores with various fuel types and core sizes[R]. NEA/NSC/R(2015)9, 2016.
    [6] Hébert A. DRAGON5 and DONJON5, the contribution of École Polytechnique de Montréal to the SALOME platform[C]//Proceedings of the 3rd International Conference on Physics and Technology of Reactors and Applications. Tetouan, Morocco, 2014.
    [7] Sukarno D H. Neutronics analysis of PWR core using DRAGON, TRIVAC, and DONJON computer codes[C]//The 2nd International Conference on Energy Sciences (ICES). Bandung, Indonesia, 2018.
    [8] Al Zain J, El Hajjaji O, El Bardouni T, et al. Deterministic evaluation of safety parameters and neutron flux spectra in the MNSR research reactor using DRAGON-4 code[J]. Journal of Radiation Research and Applied Sciences, 2018, 11(3): 255-261. doi: 10.1016/j.jrras.2018.04.002
    [9] 赵文博, 谢金森, 谢芹, 等. DRAGON&DONJON程序在MSR中堆芯燃耗计算的适用性[J]. 核技术, 2017, 40:060602-862). (Zhao Wenbo, Xie Jinsen, Xie Qin, et al. Feasibility of DRAGON&DONJON code for MSR core burnup calculation[J]. Nuclear Techniques, 2017, 40: 060602-862) doi: 10.11889/j.0253-3219.2017.hjs.40.060602
    [10] 贾国斌, 伍建辉, 陈金根, 等. 基于Dragon与Donjon程序的液态熔盐实验堆临界计算与分析[J]. 原子能科学技术, 2019, 53(5):853-862. (Jia Guobin, Wu Jianhui, Chen Jingen, et al. Critical calculation and analysis of liquid molten salt experimental reactor based on Dragon and Donjon codes[J]. Atomic Energy Science and Technology, 2019, 53(5): 853-862
    [11] Choi H, Choi M, Hon R. Benchmarking DRAGON/PARCS against KRITZ and FFTF measurements[J]. Nuclear Technology, 2019, 205(3): 486-505. doi: 10.1080/00295450.2018.1495001
    [12] Ponomarev A, Mikityuk K, Zhang Liang, et al. Superphénix benchmark Part I: results of static neutronics[J]. Journal of Nuclear Engineering and Radiation Science, 2022, 8: 011320. doi: 10.1115/1.4051449
    [13] Wang Kan, Li Zeguang, She Ding, et al. RMC - a Monte Carlo code for reactor core analysis[J]. Annals of Nuclear Energy, 2015, 85: 121-129. doi: 10.1016/j.pnucene.2015.06.013
    [14] Ponomarev A, Bednarova A, Mikityuk K. New sodium fast reactor neutronics benchmark[C]//Proceeding of PHYSOR 2018: Reactor Physics Paving the Way Towards More. Cancun, Mexico, 2018.
    [15] Hofman G L, Leibowitz L, Kramer J M, et al. Metallic fuels handbook[R]. Argonne: Argonne National Laboratory, 1985.
    [16] Nuclear Energy Agency. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technologies[M]. Nuclear Energy Agency, 2015.
    [17] Brown D A, Chadwick M B, Capote R, et al. ENDF/B-VIII. 0: the 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data[J]. Nuclear Data Sheets, 2018, 148: 1-142. doi: 10.1016/j.nds.2018.02.001
    [18] Faure B, Marleau G. Simulation of a sodium fast reactor: effect of B1 leakage models on group constant generation[J]. Annals of Nuclear Energy, 2017, 99: 484-494. doi: 10.1016/j.anucene.2016.10.002
    [19] Rachamin R, Wemple C, Fridman E. Neutronic analysis of SFR core with HELIOS-2, serpent, and DYN3D codes[J]. Annals of Nuclear Energy, 2013, 55: 194-204. doi: 10.1016/j.anucene.2012.11.030
    [20] Hebert A, Sekki D, Chambon R. A user guide for DRAGON version5[M]. Canada: École Polytechnique de Montréal, 2019.
  • 加载中
图(5) / 表(8)
计量
  • 文章访问数:  780
  • HTML全文浏览量:  267
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-04
  • 修回日期:  2022-03-14
  • 网络出版日期:  2022-03-19
  • 刊出日期:  2022-05-15

目录

    /

    返回文章
    返回