留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水中金属丝爆引燃铝粉悬浮液冲击波增强效应

袁伟 韩若愚 李琛 王亚楠 张永民

袁伟, 韩若愚, 李琛, 等. 水中金属丝爆引燃铝粉悬浮液冲击波增强效应[J]. 强激光与粒子束, 2022, 34: 075015. doi: 10.11884/HPLPB202234.220008
引用本文: 袁伟, 韩若愚, 李琛, 等. 水中金属丝爆引燃铝粉悬浮液冲击波增强效应[J]. 强激光与粒子束, 2022, 34: 075015. doi: 10.11884/HPLPB202234.220008
Yuan Wei, Han Ruoyu, Li Chen, et al. Enhancement of underwater shock waves generated by exploding-wire-initiated reactions of aluminum powder suspension[J]. High Power Laser and Particle Beams, 2022, 34: 075015. doi: 10.11884/HPLPB202234.220008
Citation: Yuan Wei, Han Ruoyu, Li Chen, et al. Enhancement of underwater shock waves generated by exploding-wire-initiated reactions of aluminum powder suspension[J]. High Power Laser and Particle Beams, 2022, 34: 075015. doi: 10.11884/HPLPB202234.220008

水中金属丝爆引燃铝粉悬浮液冲击波增强效应

doi: 10.11884/HPLPB202234.220008
基金项目: 北京市自然科学基金项目(3212034);国家自然科学基金项目(51907007);电力设备电气绝缘国家重点实验室开放课题(EIPE20204);北京理工大学实验室研究项目(2019BITSYA31)
详细信息
    作者简介:

    袁 伟,1145623396@qq.com

    通讯作者:

    韩若愚,han.ruoyu@hotmail.com

  • 中图分类号: TM89

Enhancement of underwater shock waves generated by exploding-wire-initiated reactions of aluminum powder suspension

  • 摘要: 开展了水中铜丝电爆炸引燃铝粉悬浮液的实验研究,将铝粉悬浮液置于有机玻璃管中,同轴心方向穿过200 μm的金属铜丝,经脉冲功率驱动后快速相变发生电爆炸为铝粉爆燃提供反应条件。通过比对不同质量球状铝粉(μm粒径)的悬浮液在相同脉冲电容器储能条件下的放电和冲击波参数,获得了电爆炸驱动铝粉放电特性和冲击波增强效应的规律。实验发现,电爆炸起爆铝粉的冲击波有两个明显的波峰,分别对应于金属丝电爆炸(一次冲击波)和由产物气体胀裂管壁产生的二次冲击波,且铝粉爆燃对二次冲击波的增强效应非常显著,在300 mg铝粉的悬浮液环境中,二次冲击波峰值达到2.77 MPa,是无铝粉添加环境中二次冲击波的2.25倍,冲击波冲量增强了约50%。对不同储能条件下200 mg铝粉的悬浮液环境中金属丝爆的冲击波进行了对比研究,发现随着驱动源储能的增加,电爆炸引发的主冲击波和二次冲击波压力均逐渐增大,600 J时分别达到了3.17和1.91 MPa,冲击波冲量也随储能增加而增加,在600 J储能条件时的冲量为41.12 Pa·s,储能条件约300 J时20.24 Pa·s冲量的2倍。
  • 图  1  电爆炸实验平台原理图

    Figure  1.  Schematics of the experimental setup and configurations

    图  2  典型放电波形(直径200 μm,长度4 cm,储能500 J)

    Figure  2.  Representative electrical waveforms of exploding 4-cm-long Cu with diameters of 200 μm under 500 J stored energy

    图  3  铜丝电爆炸驱动不同质量含能铝粉悬浮液冲击波信号

    Figure  3.  SW pressure signal of suspension with aluminum powder of different mass

    图  4  不同储能条件下典型波形

    Figure  4.  Typical waveforms under different energy storage conditions

    图  5  不同储能条件下相对光强典型波形

    Figure  5.  Typical waveforms of relative light intensity under different energy storage conditions

    表  1  放电参数结果统计(典型值)

    Table  1.   Statistics of the discharge parameters

    aluminum powder
    quantity/mg
    maximum
    voltage/kV
    maximum
    current/kA
    maximum measured
    resistance/Ω
    deposited energy
    Ed/J
    total deposited energy
    Etotal/J
    037.0210.245.43116.12309.15
    10016.4610.371.7585.04312.67
    20010.2110.720.9676.17310.28
    3006.6911.870.6146.95299.71
    下载: 导出CSV
  • [1] 韩若愚, 李柳霞, 钱盾, 等. 液体中金属丝电爆炸的研究现状与展望[J]. 高电压技术, 2021, 47(3):766-777. (Han Ruoyu, Li Liuxia, Qian Dun, et al. Exploding metal wires in liquids: current situation and prospects[J]. High Voltage Engineering, 2021, 47(3): 766-777

    Han Ruoyu, Li Liuxia, Qian Dun, et al. Exploding metal wires in liquids: current situation and prospects[J]. High Voltage Engineering, 2021, 47(3): 766-777
    [2] 吴佳玮, 丁卫东, 韩若愚, 等. 大电流条件下气体火花开关电极烧蚀的研究进展[J]. 高电压技术, 2021, 47(9):3367-3379. (Wu Jiawei, Ding Weidong, Han Ruoyu, et al. Review of electrode erosion in a spark gap switch under large pulsed currents[J]. High Voltage Engineering, 2021, 47(9): 3367-3379

    Wu Jiawei, Ding Weidong, Han Ruoyu, et al. Review of electrode erosion in a spark gap switch under large pulsed currents[J]. High Voltage Engineering, 2021, 47(9): 3367-3379
    [3] 张永民, 邱爱慈, 周海滨, 等. 面向化石能源开发的电爆炸冲击波技术研究进展[J]. 高电压技术, 2016, 42(4):1009-1017. (Zhang Yongming, Qiu Aici, Zhou Haibin, et al. Research progress in electrical explosion shockwave technology for developing fossil energy[J]. High Voltage Engineering, 2016, 42(4): 1009-1017

    Zhang Yongming, Qiu Aici, Zhou Haibin, et al. Research progress in electrical explosion shockwave technology for developing fossil energy[J]. High Voltage Engineering, 2016, 42(4): 1009-1017
    [4] Han Ruoyu, Wu Jiawei, Zhou Haibin, et al. Experiments on the characteristics of underwater electrical wire explosions for reservoir stimulation[J]. Matter and Radiation at Extremes, 2020, 5: 047201. doi: 10.1063/1.5135725
    [5] Grinenko A, Efimov S, Fedotov A, et al. Efficiency of the shock wave generation caused by underwater electrical wire explosion[J]. Journal of Applied Physics, 2006, 100: 113509. doi: 10.1063/1.2395603
    [6] Han Ruoyu, Zhou Haibin, Liu Qiaojue, et al. Generation of electrohydraulic shock waves by plasma-ignited energetic materials: I. Fundamental mechanisms and processes[J]. IEEE Transactions on Plasma Science, 2015, 43(12): 3999-4008. doi: 10.1109/TPS.2015.2468064
    [7] 金涌. 电热等离子体对固体火药的辐射点火及燃烧特性研究[D]. 南京: 南京理工大学, 2014

    Jin Yong. Study on radiation ignition and combustion characteristic of solid propellant by electrothermal plasma[D]. Nanjing: Nanjing University of Science and Technology, 2014
    [8] 李海元, 栗保明, 李鸿志. 等离子体增强火炮发射性能的实验研究[J]. 弹箭与制导学报, 2007, 27(2):297-299,312. (Li Haiyuan, Li Baoming, Li Hongzhi. Experimental study on gun performance augmentation by plasma[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2007, 27(2): 297-299,312 doi: 10.3969/j.issn.1673-9728.2007.02.095

    Li Haiyuan, Li Baoming, Li Hongzhi. Experimental study on gun performance augmentation by plasma[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2007, 27(2): 297-299, 312 doi: 10.3969/j.issn.1673-9728.2007.02.095
    [9] Shi Huantong, Hu Yujia, Li Tuan, et al. Detonation of a nitromethane-based energetic mixture driven by electrical wire explosion[J]. Journal of Physics D: Applied Physics, 2022, 55: 05LT01. doi: 10.1088/1361-6463/ac3174
    [10] Yanuka D, Rososhek A, Krasik Y E. Comparison of electrical explosions of Cu and Al wires in water and glycerol[J]. Physics of Plasmas, 2017, 24: 053512. doi: 10.1063/1.4983055
    [11] Rososhek A, Efimov S, Goldman A, et al. Microsecond timescale combustion of aluminum initiated by an underwater electrical wire explosion[J]. Physics of Plasmas, 2019, 26: 053510. doi: 10.1063/1.5096638
    [12] Efimov S, Gilburd L, Fedotov-Gefen A, et al. Aluminum micro-particles combustion ignited by underwater electrical wire explosion[J]. Shock Waves, 2012, 22(3): 207-214. doi: 10.1007/s00193-012-0361-3
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  628
  • HTML全文浏览量:  254
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-05
  • 修回日期:  2022-04-27
  • 录用日期:  2022-05-05
  • 网络出版日期:  2022-07-04
  • 刊出日期:  2022-05-12

目录

    /

    返回文章
    返回