留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

储存环全相干光源

姜伯承 唐传祥 冯超 邓海啸 李任恺

姜伯承, 唐传祥, 冯超, 等. 储存环全相干光源[J]. 强激光与粒子束, 2022, 34: 104001. doi: 10.11884/HPLPB202234.220047
引用本文: 姜伯承, 唐传祥, 冯超, 等. 储存环全相干光源[J]. 强激光与粒子束, 2022, 34: 104001. doi: 10.11884/HPLPB202234.220047
Jiang Bocheng, Tang Chuanxiang, Feng Chao, et al. Storage ring based coherent light sources[J]. High Power Laser and Particle Beams, 2022, 34: 104001. doi: 10.11884/HPLPB202234.220047
Citation: Jiang Bocheng, Tang Chuanxiang, Feng Chao, et al. Storage ring based coherent light sources[J]. High Power Laser and Particle Beams, 2022, 34: 104001. doi: 10.11884/HPLPB202234.220047

储存环全相干光源

doi: 10.11884/HPLPB202234.220047
基金项目: 国家自然科学基金项目(11975298)
详细信息
    作者简介:

    姜伯承,jiangbocheng@zjlab.org.cn

    通讯作者:

    唐传祥,tang.xuh@tsinghua.edu.cn

  • 中图分类号: TL54+4

Storage ring based coherent light sources

  • 摘要: 基于电子储存环的同步辐射具有稳定性高、光子能量范围广、支持多用户等优势,但其辐射相干性较差。在储存环上实现相干辐射不但可以大幅提高辐射光的相干性,同时还可以极大地提高特定频谱范围内的光通量、亮度和能量分辨率。随着光通量的提高,其功率有可能达到工业应用的水平,这将拓展光源的应用范围。回顾了基于电子束储存环的各类相干光源的发展历史,并展望其发展趋势。
  • 图  1  同步辐射横向相干性占比和电子束发射度关系图

    Figure  1.  Transverse coherent fraction versus emittance

    图  2  Femto-slicing 布局示意图

    Figure  2.  Sketch of femto-slicing

    图  3  XFELO布局示意图

    Figure  3.  Layout of XFELO

    图  4  角色散机制示意图

    Figure  4.  Sketch of ADM

    图  5  电子储存环中SSMB电子束纵向压缩示意图。

    Figure  5.  Microbunch compression in the storage ring of SSMB

    图  6  SSMB原理验证示意图

    Figure  6.  Schematic of the experimental set-up of SSMB

  • [1] Elder F R, Gurewitsch A M, Langmuir R V, et al. Radiation from electrons in a synchrotron[J]. Physical Review, 1947, 71: 829.
    [2] 赵振堂. 先进X射线光源加速器原理与关键技术[M]. 上海: 上海交通大学出版社, 2021

    Zhao Zhentang. Principles and key technologies of advanced X-ray light source accelerators[M]. Shanghai: Shanghai Jiao Tong University Press, 2021
    [3] Hettel R. DLSR design and plans: an international overview[J]. Journal of Synchrotron Radiation, 2014, 21(5): 843-855. doi: 10.1107/S1600577514011515
    [4] Jankowiak A, Wüstefeld G. Low-α operation of BESSY II and future plans for an alternating bunch length scheme BESSYVSR[J]. Synchrotron Radiation News, 2013, 26(3): 22-24. doi: 10.1080/08940886.2013.791212
    [5] Byrd J M, Loftsdóttir Á, Venturini M, et al. Stable CSR in storage rings: a model[R]. LBNL-56777, 2005.
    [6] Byrd J M, Leemans W P, Loftsdottir A, et al. Observation of broadband self-amplified spontaneous coherent terahertz synchrotron radiation in a storage ring[J]. Physical Review Letters, 2002, 89: 224801. doi: 10.1103/PhysRevLett.89.224801
    [7] Venturini M, Warnock R. Bursts of coherent synchrotron radiation in electron storage rings: a dynamical model[J]. Physical Review Letters, 2002, 89: 224802. doi: 10.1103/PhysRevLett.89.224802
    [8] Schoenlein R W, Chattopadhyay S, Chong H H W, et al. Generation of femtosecond pulses of synchrotron radiation[J]. Science, 2000, 287(5461): 2237-2240. doi: 10.1126/science.287.5461.2237
    [9] Ingold G, Beaud P, Johnson S L, et al. Technical report: FEMTO: a sub-ps tunable hard X-ray undulator source for laser/X-ray pump-probe experiments at the SLS[J]. Synchrotron Radiation News, 2007, 20(5): 35-39. doi: 10.1080/08940880701631377
    [10] Zholents A A, Zolotorev M S. Femtosecond X-ray pulses of synchrotron radiation[J]. Physical Review Letters, 1996, 76(6): 912-915. doi: 10.1103/PhysRevLett.76.912
    [11] Billardon M, Elleaume P, Ortega J M, et al. First operation of a storage-ring free-electron laser[J]. Physical Review Letters, 1983, 51(18): 1652-1655. doi: 10.1103/PhysRevLett.51.1652
    [12] Girard B, Lapierre Y, Ortega J M, et al. Optical frequency multiplication by an optical klystron[J]. Physical Review Letters, 1984, 53(25): 2405-2408. doi: 10.1103/PhysRevLett.53.2405
    [13] Couprie M E, Billardon M, Velghe M, et al. Free-electron-laser oscillation on the super-ACO storage ring at Orsay[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1990, 296(1/3): 13-19.
    [14] Couprie M E, Velghe M, Prazeres R, et al. Results and analysis of free-electron-laser oscillation in a high-energy storage ring[J]. Physical Review A, 1991, 44(2): 1301-1315. doi: 10.1103/PhysRevA.44.1301
    [15] Yamada K, Yamazaki T, Sugiyama S, et al. Visible oscillation of storage-ring free electron laser on TERAS[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1992, 318(1/3): IN1,33-37.
    [16] Litvinenko V N, Burnham B, Emamian M, et al. Gamma-ray production in a storage ring free-electron laser[J]. Physical Review Letters, 1997, 78(24): 4569-4572. doi: 10.1103/PhysRevLett.78.4569
    [17] Yamazaki T, Yamada K, Sugiyama S, et al. First lasing of the NIJI-IV storage-ring free-electron laser[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1993, 331(1/3): 27-33.
    [18] Deacon D A G, Billardon M, Elleaume P, et al. Optical klystron experiments for the ACO storage ring free electron laser[J]. Applied Physics B, 1984, 34(4): 207-219. doi: 10.1007/BF00697637
    [19] Litvinenko V N, Park S H, Pinayev I V, et al. Operation of the OK-4/Duke storage ring FEL below 200 nm[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 475(1/3): 195-204.
    [20] Wu Y K, Vinokurov N A, Mikhailov S, et al. High-gain lasing and polarization switch with a distributed optical-klystron free-electron laser[J]. Physical Review Letters, 2006, 96: 224801. doi: 10.1103/PhysRevLett.96.224801
    [21] Yamanaka C. Free electron laser: technical issues and prospects in Japan[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1993, 331(1/3): 191-198.
    [22] Khan S, Bakr M, Höner M, et al. Coherent harmonic generation at DELTA: a new facility for ultrashort pulses in the VUV and THz regime[J]. Synchrotron Radiation News, 2011, 24(5): 18-23. doi: 10.1080/08940886.2011.618092
    [23] 陈念, 徐宏亮, 刘金英, 等. 储存环相干谐波自由电子激光器新光学速调管工作状态分析[J]. 强激光与粒子束, 2003, 15(6):524-528

    Chen Nian, Xu Hongliang, Liu Jinying, et al. Working condition of reconstructed optical klystron of CHG-SRFEL[J]. High Power Laser and Particle Beams, 2003, 15(6): 524-528
    [24] Yu Lihua. Generation of intense UV radiation by subharmonically seeded single-pass free-electron lasers[J]. Physical Review A, 1991, 44(8): 5178-5193. doi: 10.1103/PhysRevA.44.5178
    [25] Stupakov G. Using the beam-echo effect for generation of short-wavelength radiation[J]. Physical Review Letters, 2009, 102: 074801. doi: 10.1103/PhysRevLett.102.074801
    [26] Xiang Dao, Stupakov G. Echo-enabled harmonic generation free electron laser[J]. Physical Review Special Topics—Accelerators and Beams, 2009, 12: 030702. doi: 10.1103/PhysRevSTAB.12.030702
    [27] Xiang Dao, Wan Weishi. Generating ultrashort coherent soft X-ray radiation in storage rings using angular-modulated electron beams[J]. Physical Review Letters, 2010, 104: 084803. doi: 10.1103/PhysRevLett.104.084803
    [28] Stupakov G. Frequency multiplication using coherent radiation of a ‘‘snake’’ beam[J]. Physical Review Accelerators and Beams, 2013, 16: 010702. doi: 10.1103/PhysRevSTAB.16.010702
    [29] Evain C, Loulergue A, Nadji A, et al. Soft X-ray femtosecond coherent undulator radiation in a storage ring[J]. New Journal of Physics, 2012, 14: 023003. doi: 10.1088/1367-2630/14/2/023003
    [30] Deng Haixiao, Feng Chao. Using off-resonance laser modulation for beam-energy-spread cooling in generation of short-wavelength radiation[J]. Physical Review Letters, 2013, 111: 084801. doi: 10.1103/PhysRevLett.111.084801
    [31] Feng Chao, Deng Haixiao, Wang Dong, et al. Phase-merging enhanced harmonic generation free-electron laser[J]. New Journal of Physics, 2014, 16: 043021. doi: 10.1088/1367-2630/16/4/043021
    [32] Feng Chao, Zhao Zhentang. A storage ring based free-electron laser for generating ultrashort coherent EUV and X-ray radiation[J]. Scientific Reports, 2017, 7: 4724. doi: 10.1038/s41598-017-04962-5
    [33] Wang Xiaofan, Feng Chao, Liu Tao, et al. Angular dispersion enhanced prebunch for seeding ultrashort and coherent EUV and soft X-ray free-electron laser in storage rings[J]. Journal of Synchrotron Radiation, 2019, 26(3): 677-684. doi: 10.1107/S1600577519002674
    [34] Li Changliang, Feng Chao, Jiang Bocheng. Extremely bright coherent synchrotron radiation production in a diffraction-limited storage ring using an angular dispersion-induced microbunching scheme[J]. Physical Review Accelerators and Beams, 2020, 23: 110701. doi: 10.1103/PhysRevAccelBeams.23.110701
    [35] Li Changliang, Jiang Bocheng, Feng Chao, et al. Lattice design for angular dispersion enhanced microbunching in storage rings[J]. Journal of Instrumentation, 2021, 16: P03004. doi: 10.1088/1748-0221/16/03/P03004
    [36] Liu Weihang, Zhou Guanqun, Jiao Yi. Generating femtosecond coherent X-ray pulses in a diffraction-limited storage ring with the echo-enabled harmonic generation scheme[J]. Nuclear Science and Techniques, 2018, 29: 143. doi: 10.1007/s41365-018-0476-z
    [37] Liu Weihang, Wu Yi, Jiao Yi, et al. Generation of two-color polarization-adjustable radiation pulses for storage ring light source[J]. Nuclear Science and Techniques, 2019, 30: 66. doi: 10.1007/s41365-019-0578-2
    [38] Hwang J G, Schiwietz G, Abo-Bakr M, et al. Generation of intense and coherent sub-femtosecond X-ray pulses in electron storage rings[J]. Scientific Reports, 2020, 10: 10093. doi: 10.1038/s41598-020-67027-0
    [39] Huang Nanshun, Deng Haixiao, Liu Bo, et al. Features and futures of X-ray free-electron lasers[J]. The Innovation, 2021, 2: 100097.
    [40] Agapov I. Feasibility of a ring FEL at low emittance storage rings[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 793: 35-40.
    [41] Kim K J, Shvyd’ko Y, Reiche S. A proposal for an X-ray free-electron laser oscillator with an energy-recovery linac[J]. Physical Review Letters, 2008, 100: 244802. doi: 10.1103/PhysRevLett.100.244802
    [42] Huang Zhirong, Ding Yuantao, Schroeder C B. Compact X-ray free-electron laser from a laser-plasma accelerator using a transverse-gradient undulator[J]. Physical Review Letters, 2012, 109: 204801. doi: 10.1103/PhysRevLett.109.204801
    [43] Lindberg R, Kim K J, Cai Y, et al. Transverse gradient undulators for a storage ring X-ray FEL oscillator[C]//Proceedings of FEL 2013. New York, NY, USA, 2013: 740-748.
    [44] Agapov I, Chae Y C, Hillert W. Low gain FEL oscillator option for PETRA IV[C]//Proceedings of the 9th International Particle Accelerator Conference. Vancouver, BC, Canada: JACoW Publishing, 2018: 1420-1422.
    [45] Cai Yunhai, Ding Yuantao, Hettel R, et al. An X-ray free electron laser driven by an ultimate storage ring[J]. Synchrotron Radiation News, 2013, 26(3): 39-41. doi: 10.1080/08940886.2013.791216
    [46] Di Mitr S. One way only to synchrotron light sources upgrade?[J]. Journal of Synchrotron Radiation, 2018, 25: 1323-1334. doi: 10.1107/S160057751800810X
    [47] Di Mitri S, Cornacchia M, Diviacco B, et al. Bridging the gap of storage ring light sources and linac-driven free-electron lasers[J]. Physical Review Accelerators and Beams, 2021, 24: 060702. doi: 10.1103/PhysRevAccelBeams.24.060702
    [48] Li Changliang, Feng Chao, Jiang Bocheng, et al. Lattice design for the reversible SSMB[C]//Proceedings of the 10th International Particle Accelerator Conference. Melbourne, Australia: JACoW Publishing, 2019: 1507-1509.
    [49] KEK. KEK report 2020-4[R].
    [50] Jiang Bocheng, Feng Chao, Li Changliang, et al. A synchrotron-based kilowatt-level radiation source for EUV lithography[J]. Scientific Reports, 2022, 12: 3325. doi: 10.1038/s41598-022-07323-z
    [51] Ratner D F, Chao A W. Steady-state microbunching in a storage ring for generating coherent radiation[J]. Physical Review Letters, 2010, 105: 154801. doi: 10.1103/PhysRevLett.105.154801
    [52] Deng X J, Chao A W, Feikes J, et al. Single-particle dynamics of microbunching[J]. Physical Review Accelerators and Beams, 2020, 23: 044002. doi: 10.1103/PhysRevAccelBeams.23.044002
    [53] Deng X J, Chao A W, Huang W H, et al. Courant-Snyder formalism of longitudinal dynamics[J]. Physical Review Accelerators and Beams, 2021, 24: 094001. doi: 10.1103/PhysRevAccelBeams.24.094001
    [54] Deng X J, Huang W H, Li Z Z, et al. Harmonic generation and bunch compression based on transverse-longitudinal coupling[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1019: 165859. doi: 10.1016/j.nima.2021.165859
    [55] Tang Chuanxiang, Deng Xiujie, Huang Wenhui, et al. An overview of the progress on SSMB[C]//Proceedings of the 60th ICFA Advanced Beam Dynamics Workshop on Future Light Sources. Shanghai, China: JACoW Publishing, 2018: 166-170.
    [56] Zhang Y, Deng X J, Pan Z L, et al. Ultralow longitudinal emittance storage rings[J]. Physical Review Accelerators and Beams, 2021, 24: 090701. doi: 10.1103/PhysRevAccelBeams.24.090701
    [57] Deng Xiujie, Chao A, Feikes J, et al. Experimental demonstration of the mechanism of steady-state microbunching[J]. Nature, 2021, 590(7847): 576-579. doi: 10.1038/s41586-021-03203-0
  • 加载中
图(6)
计量
  • 文章访问数:  1130
  • HTML全文浏览量:  363
  • PDF下载量:  289
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-17
  • 修回日期:  2022-04-10
  • 网络出版日期:  2022-04-21
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回