留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于空气孔微结构光纤的表面等离子体共振折射率传感器

谭启龙 张夏 康虎 彭志清 李筱薇 杨莫愁 冯国英

谭启龙, 张夏, 康虎, 等. 基于空气孔微结构光纤的表面等离子体共振折射率传感器[J]. 强激光与粒子束, 2022, 34: 059001. doi: 10.11884/HPLPB202234.220062
引用本文: 谭启龙, 张夏, 康虎, 等. 基于空气孔微结构光纤的表面等离子体共振折射率传感器[J]. 强激光与粒子束, 2022, 34: 059001. doi: 10.11884/HPLPB202234.220062
Tan Qilong, Zhang Xia, Kang Hu, et al. Surface plasmon resonance refractive index sensor based on microstructured fiber with air-hole[J]. High Power Laser and Particle Beams, 2022, 34: 059001. doi: 10.11884/HPLPB202234.220062
Citation: Tan Qilong, Zhang Xia, Kang Hu, et al. Surface plasmon resonance refractive index sensor based on microstructured fiber with air-hole[J]. High Power Laser and Particle Beams, 2022, 34: 059001. doi: 10.11884/HPLPB202234.220062

基于空气孔微结构光纤的表面等离子体共振折射率传感器

doi: 10.11884/HPLPB202234.220062
基金项目: 等离子体物理重点实验室基金项目(6142A04200210);国家自然科学基金委员会与中国工程物理研究院联合基金项目(U1730141)
详细信息
    作者简介:

    谭启龙,2018222059275@stu.scu.edu.cn

    通讯作者:

    冯国英,guoing_feng@scu.edu.cn

  • 中图分类号: TN249

Surface plasmon resonance refractive index sensor based on microstructured fiber with air-hole

  • 摘要: 提出了一种基于表面等离子体共振(SPR)效应增强的光子晶体光纤折射率传感器。该传感器结构通过光纤熔接机拼接光子晶体光纤(PCF),在光子晶体光纤中间引入一个空气孔形成PCF-空气孔-PCF的光纤传感结构,随后使用磁控溅射镀膜工艺在其表面沉积一层薄金膜制备而成。实验探究了折射率及温度对传感器的响应。结果表明,在1.333~1.389的折射率范围内,所提出的传感器的平均折射率灵敏度为2 142.52 nm,且测量线性度为0.981,品质因子约13.10。实验结果表明该传感器对温度不敏感。相比于无空气孔的PCF传感结构,引入的空气孔增强了SPR效应,使得传感器拥有良好的共振峰深度。得益于上述优势,该类型传感器有望在生物医学、环境监测等领域得到应用。
  • 图  1  (a)传感结构示意图、(b)PCF之间引入空气孔的熔接图、(c)两段PCF之间塌陷区及空气孔的光学显微镜图像、(d)柚子型PCF端面显微镜图

    Figure  1.  (a) Schematic diagram of the sensing structure, (b) splicing diagram of air holes introduced between PCFs, (c) optical microscope image of the collapsed area and air holes between two PCFs, (d) surface microscopic image of the grapefruit-shaped PCF end

    图  2  传感器的结构制备流程

    Figure  2.  Structure and preparation process of the sensor

    图  3  传感系统示意图

    Figure  3.  Schematic diagram of the sensing system

    图  4  不同溅射时长对传感器的影响

    Figure  4.  Effect of different sputtering time on the sensor

    图  5  传感器的SPR透射光谱及波长偏移与折射率的关系

    Figure  5.  SPR transmission spectra of the sensor and relationship between wavelength shift and refractive index

    图  6  4种不同传感结构传感器的光谱共振峰深度对比

    Figure  6.  Comparison of spectral resonance peak depths of four sensors with different sensing structures

    图  7  传感器对温度的响应及线性拟合

    Figure  7.  Sensor response to temperature and linear fitting

  • [1] Xian Pei, Feng Guoying, Ju Yao, et al. Single-mode all-fiber structured modal interference for temperature and refractive index sensing[J]. Laser Physics Letters, 2017, 14(8): 085101. doi: 10.1088/1612-202X/aa779c
    [2] Li Lecheng, Xia Li, Xie Zhenhai, et al. All-fiber Mach-Zehnder interferometers for sensing applications[J]. Optics Express, 2012, 20(10): 11109-11120. doi: 10.1364/OE.20.011109
    [3] Li Xiaowei, Tan Jianchang, Li Wei, et al. A high-sensitivity optical fiber temperature sensor with composite materials[J]. Optical Fiber Technology, 2022, 68: 102821. doi: 10.1016/j.yofte.2022.102821
    [4] Tan Jianchang, Feng Guoying, Zhang Shulin, et al. Dual spherical single-mode-multimode-single-mode optical fiber temperature sensor based on a Mach-Zehnder interferometer[J]. Laser Physics, 2018, 28(7): 075102. doi: 10.1088/1555-6611/aabb26
    [5] 李筱薇, 谭建昌, 冯国英. 基于马赫-曾德干涉的全光纤双参量传感器[J]. 强激光与粒子束, 2021, 33(11):111010. (Li Xiaowei, Tan Jianchang, Feng Guoying. All-fiber dual-parameter sensor based on Mach-Zehnder interference[J]. High Power Laser and Particle Beams, 2021, 33(11): 111010 doi: 10.11884/HPLPB202133.210498
    [6] Liao C R, Hu Tianyi, Wang D N. Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing[J]. Optics Express, 2012, 20(20): 22813-22818. doi: 10.1364/OE.20.022813
    [7] Zhou Jiangtao, Wang Yiping, Liao Changrui, et al. Intensity modulated refractive index sensor based on optical fiber Michelson interferometer[J]. Sensors and Actuators B:Chemical, 2015, 208: 315-319. doi: 10.1016/j.snb.2014.11.014
    [8] 范振凯, 张子超, 王保柱, 等. 基于表面等离子体共振效应的光子晶体光纤折射率传感器的研究进展[J]. 激光与光电子学进展, 2019, 56(7):070004. (Fan Zhenkai, Zhang Zichao, Wang Baozhu, et al. Research progress of photonic crystal fiber refractive index sensors based on surface plasmon resonance effect[J]. Laser & Optoelectronics Progress, 2019, 56(7): 070004
    [9] 魏方皓, 张祥军, 唐守锋. 基于表面等离子体共振的光子晶体光纤折射率传感器的设计与分析[J]. 半导体光电, 2020, 41(1):35-38,43. (Wei Fanghao, Zhang Xiangjun, Tang Shoufeng. Design and analysis of photonic crystal fiber refractive index sensor based on surface plasmon resonance[J]. Semiconductor Optoelectronics, 2020, 41(1): 35-38,43
    [10] Hassani A, Skorobogatiy M. Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics[J]. Optics Express, 2006, 14(24): 11616-11621. doi: 10.1364/OE.14.011616
    [11] Tan Y C, Tou Z Q, Chow K K, et al. Graphene-deposited photonic crystal fibers for continuous refractive index sensing applications[J]. Optics Express, 2015, 23(24): 31286-31294. doi: 10.1364/OE.23.031286
    [12] Taha B A, Ali N, Sapiee N M, et al. Comprehensive review tapered optical fiber configurations for sensing application: trend and challenges[J]. Biosensors, 2021, 11(8): 253. doi: 10.3390/bios11080253
    [13] Deng Ming, Tang Changping, Zhu Tao, et al. Refractive index measurement using photonic crystal fiber-based Fabry-Perot interferometer[J]. Applied Optics, 2010, 49(9): 1593-1598. doi: 10.1364/AO.49.001593
    [14] Zhao Yong, Xia Feng, Li Jin. Sensitivity-enhanced photonic crystal fiber refractive index sensor with two waist-broadened tapers[J]. Journal of Lightwave Technology, 2016, 34(4): 1373-1379. doi: 10.1109/JLT.2016.2519534
    [15] Nguyen H H, Park J, Kang S, et al. Surface plasmon resonance: a versatile technique for biosensor applications[J]. Sensors, 2015, 15(5): 10481-10510. doi: 10.3390/s150510481
    [16] Wang Qi, Wang Botao. Sensitivity enhanced SPR immunosensor based on graphene oxide and SPA co-modified photonic crystal fiber[J]. Optics & Laser Technology, 2018, 107: 210-215.
    [17] Zheng Wanlu, Han Bo, E Siyu, et al. Highly-sensitive and reflective glucose sensor based on optical fiber surface plasmon resonance[J]. Microchemical Journal, 2020, 157: 105010. doi: 10.1016/j.microc.2020.105010
    [18] Liu Shuhui, Cao Shaoqing, Zhang Zhe, et al. Temperature sensor based on side-polished fiber SPR device coated with polymer[J]. Sensors, 2019, 19(19): 4063. doi: 10.3390/s19194063
    [19] Shi Se, Wang Libing, Su Rongxiu, et al. A polydopamine-modified optical fiber SPR biosensor using electroless-plated gold films for immunoassays[J]. Biosensors and Bioelectronics, 2015, 74: 454-460. doi: 10.1016/j.bios.2015.06.080
    [20] Wang Qi, Wang Xuezhou, Song Hang, et al. A dual channel self-compensation optical fiber biosensor based on coupling of surface plasmon polariton[J]. Optics & Laser Technology, 2020, 124: 106002.
    [21] 郑万禄, 马遥, 张亚男. 光纤表面等离子体共振葡萄糖浓度传感器研究[J]. 自动化学报, 2020, 46(x):1-5. (Zheng Wanlu, Ma Yao, Zhang Ya’nan. Research on glucose concentration sensor based on optical fiber surface plasmon resonance technology[J]. Acta Automatica Sinica, 2020, 46(x): 1-5
    [22] Wang Yong, Huang Qing, Zhu Wenjie, et al. Novel optical fiber SPR temperature sensor based on MMF-PCF-MMF structure and gold-PDMS film[J]. Optics Express, 2018, 26(2): 1910-1917. doi: 10.1364/OE.26.001910
    [23] Chen Zhenlin, Han Kunlin, Zhang Ya’nan. Reflective fiber surface plasmon resonance sensor for high-sensitive mercury ion detection[J]. Applied Sciences, 2019, 9(7): 1480. doi: 10.3390/app9071480
    [24] Liu Ye, Wang D N, Chen W P. Crescent shaped Fabry-Perot fiber cavity for ultra-sensitive strain measurement[J]. Scientific Reports, 2016, 6(1): 38390. doi: 10.1038/srep38390
    [25] Fan Jiaxuan, Li Wenyu, Liu Yuhao, et al. Fiber strain sensor based on compact in-line air cavity fabricated by conventional single mode fiber[J]. Microwave and Optical Technology Letters, 2021,doi: 10.1002/mop.33157.
    [26] Wu Yongfeng, Zhang Yundong, Wu Jing, et al. Temperature-insensitive fiber optic Fabry-Perot interferometer based on special air cavity for transverse load and strain measurements[J]. Optics Express, 2017, 25(8): 9443-9448. doi: 10.1364/OE.25.009443
    [27] Zhao Yong, Lei Ming, Liu Shixuan, et al. Smart hydrogel-based optical fiber SPR sensor for pH measurements[J]. Sensors and Actuators B:Chemical, 2018, 261: 226-232. doi: 10.1016/j.snb.2018.01.120
    [28] Chauhan M, Kumar Singh V. Review on recent experimental SPR/LSPR based fiber optic analyte sensors[J]. Optical Fiber Technology, 2021, 64: 102580. doi: 10.1016/j.yofte.2021.102580
    [29] Zhang Rui, Pu Shengli, Li Xinjie. Gold-film-thickness dependent SPR refractive index and temperature sensing with hetero-core optical fiber structure[J]. Sensors, 2019, 19(19): 4345. doi: 10.3390/s19194345
    [30] Suzuki H, Sugimoto M, Matsui Y, et al. Effects of gold film thickness on spectrum profile and sensitivity of a multimode-optical-fiber SPR sensor[J]. Sensors and Actuators B: Chemical, 2008, 132(1): 26-33. doi: 10.1016/j.snb.2008.01.003
  • 加载中
图(7)
计量
  • 文章访问数:  778
  • HTML全文浏览量:  386
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-09
  • 修回日期:  2022-04-08
  • 网络出版日期:  2022-04-19
  • 刊出日期:  2022-05-15

目录

    /

    返回文章
    返回