留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

实装灼热桥丝式电火工品电磁辐射敏感度测试方法评述

吕旭旭 魏光辉

吕旭旭, 魏光辉. 实装灼热桥丝式电火工品电磁辐射敏感度测试方法评述[J]. 强激光与粒子束, 2023, 35: 063001. doi: 10.11884/HPLPB202335.220346
引用本文: 吕旭旭, 魏光辉. 实装灼热桥丝式电火工品电磁辐射敏感度测试方法评述[J]. 强激光与粒子束, 2023, 35: 063001. doi: 10.11884/HPLPB202335.220346
Lü Xuxu, Wei Guanghui. Comments on the electromagnetic safety assessment method for hot bridge wire electro-explosive device[J]. High Power Laser and Particle Beams, 2023, 35: 063001. doi: 10.11884/HPLPB202335.220346
Citation: Lü Xuxu, Wei Guanghui. Comments on the electromagnetic safety assessment method for hot bridge wire electro-explosive device[J]. High Power Laser and Particle Beams, 2023, 35: 063001. doi: 10.11884/HPLPB202335.220346

实装灼热桥丝式电火工品电磁辐射敏感度测试方法评述

doi: 10.11884/HPLPB202335.220346
基金项目: 国防基础科研重点项目(50909030501)
详细信息
    作者简介:

    吕旭旭,lyuxuxu@163.com

    通讯作者:

    魏光辉,wei-guanghui@sohu.com

  • 中图分类号: TJ54

Comments on the electromagnetic safety assessment method for hot bridge wire electro-explosive device

  • 摘要:

    从实装灼热桥丝式电火工品的电磁辐射安全性评估技术角度出发,评述了近年来灼热桥丝式电火工品电磁辐射安全性的几种测试评估方法,并指出了未来应重点研究的方向。研究指出采用高精度、快响应的光纤测温装置监测灼热桥丝式电火工品在外部强场辐照下的温升响应,通过外推确定受试电火工品的发火感度,从而对灼热桥丝式电火工品的电磁辐射安全性进行评估是突破现有评估技术瓶颈的有效措施;应进一步研究解决脉冲条件下由于灼热桥丝式电火工品桥丝响应时间远小于光纤测温装置响应时间导致的无法精确测温问题,以满足实装灼热桥丝式电火工品电磁辐射安全性评估的实际需求。

  • 图  1  桥丝温升曲线

    Figure  1.  Bridge wire temperature rise curve

    图  2  灼热桥丝式电火工品非均匀传输线模型[23]

    Figure  2.  Non-uniform TML model of the hot bridge-wire EED[23]

    图  3  灼热桥丝式电火工品点火能测试装置[25]

    Figure  3.  Experimental setup to determine the electrical energy for ignition of EED[25]

    图  4  电容放电装置示意图[26]

    Figure  4.  Schematic diagram of the capacitor discharge unit[26]

    图  5  灼热桥丝式电火工品电磁辐射试验原理[27]

    Figure  5.  Principle of electromagnetic radiation experiment[27]

    图  6  光纤荧光测温法光路图

    Figure  6.  Optical path diagram of fiber optic fluorescence pyrometry

    图  7  白光干涉型测温原理

    Figure  7.  Schematic diagram of white light interference type fiber optic temperature measurement device

    图  8  GaAs光纤测温装置原理图[37]

    Figure  8.  Schematic diagram of GaAs fiber optic temperature measurement device[37]

    图  9  测试系统图[39]

    Figure  9.  System diagram[39]

    图  10  感应电流测试系统[41]

    Figure  10.  Test set up for measurement of induced current[41]

    图  11  红外光纤测温系统[43]

    Figure  11.  Infrared fiber optic temperature measurement system[43]

    图  12  辐照试验布局示意图[45]

    Figure  12.  Radiation test layout diagram[45]

    图  13  连续波试验系统

    Figure  13.  Continuous wave test system

    图  14  脉冲试验系统

    Figure  14.  Impulse test system

    表  1  几种光纤测温装置特点

    Table  1.   Characteristics of several types of fiber-optic temperature measurement devices

    typeresponse timeprecision
    fiber infrared
    fiber optic fluorescence
    white light interference
    microseconds
    seconds
    seconds
    lower
    low
    high
    GaAssub-secondhigher
    下载: 导出CSV
  • [1] Zhang He, Dai Keren, Yin Qiang. Ammunition reliability against the harsh environments during the launch of an electromagnetic gun: a review[J]. IEEE Access, 2019, 7: 45322-45339. doi: 10.1109/ACCESS.2019.2907735
    [2] Yang Maosong, Sun Yongwei, Zhou Lidong. Summary of electrostatic sensitivity of EED and anti-electrostatic measures[C]//Proceedings of the 7th IEEE International Symposium on Microwave, Antenna, Propagation, and EMC Technologies. 2017: 184-186.
    [3] 张旭, 马志刚, 邱立军, 等. 舰载相控阵雷达对火工品安全影响[J]. 舰船电子工程, 2018, 38(6):123-127 doi: 10.3969/j.issn.1672-9730.2018.06.032

    Zhang Xu, Ma Zhigang, Qiu Lijun, et al. Effect of ship-borne phased array radar on safety of initiating explosive device[J]. Ship Electronic Engineering, 2018, 38(6): 123-127 doi: 10.3969/j.issn.1672-9730.2018.06.032
    [4] Wang Biao, Sun Yongwei, Wang Xuetian. Test method for bridge wire temperature during ignition of electric explosive device[C]//Proceedings of SPIE, International Conference on Intelligent Equipment and Special Robots. 2021: 121270R.
    [5] Parate B A, Salkar Y B, Chandel S, et al. A novel method for dynamic pressure and velocity measurement related to a power cartridge using a velocity test rig for water-jet disruptor applications[J]. Central European Journal of Energetic Materials, 2019, 16(3): 319-342. doi: 10.22211/cejem/110365
    [6] Cooper E F. Electro-explosive devices[J]. IEEE Potentials, 2000, 19(4): 19-22. doi: 10.1109/45.877860
    [7] Kichouliya R, Devender T, Ramasarma V V, et al. Investigating the effects of impulse excitations on instrumented electro-explosive devices[C]//Proceedings of 2012 Asia-Pacific Symposium on Electromagnetic Compatibility. 2012: 988-992.
    [8] Xu Qiu, Yang Zhuoqing, Zhang Qihuan, et al. Simulation and characterization of a thin film Au/Ni micro hot bridge-wire ignition element under capacitor discharging[J]. International Journal of Thermal Sciences, 2016, 102: 100-110. doi: 10.1016/j.ijthermalsci.2015.11.009
    [9] Dang Pengyang, Liu Jiang, Ni Debin, et al. Analysis of electro explosive performance of Al/MoO3 bridge wire initiating explosive devices with different modulation ratio[C]//Proceedings of 2021 IEEE International Conference on Advances in Electrical Engineering and Computer Applications. 2021: 369-372.
    [10] Lv Zhixing, Yan Nan, Bao Bingliang. Pin-pin ESD protection for electro-explosive device under severe human body ESD[J]. Microelectronics Reliability, 2017, 75: 37-42. doi: 10.1016/j.microrel.2017.06.004
    [11] MIL-STD-1512, Electroexplosive subsystems, electrically initiated, design requirements and test methods[S].
    [12] MIL-STD-464C, Electromagnetic environmental effects requirements for systems[S].
    [13] GJB 7504-2012电磁辐射对军械危害试验方法[S]

    GJB 7504-2012 Test method for hazards of electromagnetic radiation to ordnance[S]
    [14] GJB 1389A-2005系统电磁兼容性要求[S]

    GJB 1389A-2005 Electromagnetic compatibility requirements for systems[S]
    [15] GJB 8848-2016系统电磁环境效应试验方法[S]

    GJB 8848-2016 Electromagnetic environmental effects test methods for systems[S]
    [16] Lu Xinfu, Wei Guanghui, Pan Xiaodong, et al. Dual-port pulsed differential-mode current injection method for high-level electromagnetic pulse radiated susceptibility testing[J]. IET Science, Measurement & Technology, 2016, 10(5): 505-512.
    [17] 潘晓东, 魏光辉, 卢新福, 等. 差模定向注入等效替代强电磁脉冲辐射效应试验方法[J]. 电波科学学报, 2017, 32(2):151-160 doi: 10.13443/j.cjors.2017021801

    Pan Xiaodong, Wei Guanghui Lu Xinfu, et al. Test method of using differential mode directional injection as a substitute for high intensity electromagnetic pulse radiation[J]. Chinese Journal of Radio Science, 2017, 32(2): 151-160 doi: 10.13443/j.cjors.2017021801
    [18] 卢新福, 魏光辉, 潘晓东, 等. 用频装备强场电磁辐射效应等效试验方法[J]. 系统工程与电子技术, 2022, 44(3):755-761 doi: 10.12305/j.issn.1001-506X.2022.03.06

    Lu Xinfu, Wei Guanghui, Pan Xiaodong, et al. High intensity electromagnetic field radiation effect equivalent test method for spectrum-dependent equipment[J]. Systems Engineering and Electronics, 2022, 44(3): 755-761 doi: 10.12305/j.issn.1001-506X.2022.03.06
    [19] Rosenthal L A. Thermal response of bridgewires used in electroexplosive devices[J]. Review of Scientific Instruments, 1961, 32(9): 1033-1036. doi: 10.1063/1.1717607
    [20] Koc S, Tinaztepe H T. A study for the effect of low level conducted periodic pulsed currents and electromagnetic environment on electro explosive device systems[C]//Proceedings of the 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 2006.
    [21] 王鹏, 杜志明. 桥丝式电火工品热点火理论[J]. 火工品, 2007(4):26-30 doi: 10.3969/j.issn.1003-1480.2007.04.007

    Wang Peng, Du Zhiming. Thermal ignition theory of electric hot wire initiating devices[J]. Initiators & Pyrotechnics, 2007(4): 26-30 doi: 10.3969/j.issn.1003-1480.2007.04.007
    [22] Ye Juan, Li Guilan, Zhao Longfei. Quantitative evaluation for radio-frequency effects of electro-explosive device[C]//Proceedings of 2015 IEEE International Symposium on Electromagnetic Compatibility. 2015: 417-421.
    [23] Li Jinpeng, Zhou Zhongyuan, Hu Peng, et al. Calculating method for RF induced current of electric-explosive device based on Agrawal model and non-uniform transmission line[C]//Proceedings of the 2019 14th IEEE International Conference on Electronic Measurement & Instruments. 2019: 736-741.
    [24] Pantoja J J, Peña N, Mora N, et al. On the electromagnetic susceptibility of hot wire-based electroexplosive devices to RF sources[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(4): 754-763. doi: 10.1109/TEMC.2012.2222891
    [25] Babu A S, Mishra K K, Shetty C P, et al. Method to determine the electrical energy for ignition of electro-explosive devices[J]. Journal of Aerospace Technology and Management, 2015, 7(3): 285-288. doi: 10.5028/jatm.v7i3.496
    [26] Wang Jun, Zhou Bin, Ye Shuqin, et al. Novel electro-explosive device incorporating a planar transient suppression diode[J]. IEEE Electron Device Letters, 2020, 41(9): 1416-1419. doi: 10.1109/LED.2020.3008907
    [27] 王可暄, 白颖伟, 任炜, 等. 电热火工品连续电磁波环境下响应规律[J]. 含能材料, 2012, 20(5):610-613 doi: 10.3969/j.issn.1006-9941.2012.05.020

    Wang Kexuan, Bai Yingwei, Ren Wei, et al. Response rule of hot-wire EED in continuous electromagnetic environment[J]. Chinese Journal of Energetic Materials, 2012, 20(5): 610-613 doi: 10.3969/j.issn.1006-9941.2012.05.020
    [28] Liu Jiankai, Zhang Yuru, Zhao Kai, et al. Simulations of standing wave effect, stop band effect, and skin effect in large-area very high frequency symmetric capacitive discharges[J]. Plasma Science and Technology, 2021, 23: 035401. doi: 10.1088/2058-6272/abe18f
    [29] Li Guilan, Feng Zhang, Ma Weiyu. Study on radio-frequency damage effects of electro-explosive device[C]//Proceedings of 2014 International Symposium on Electromagnetic Compatibility. 2014: 980-984.
    [30] Wang Ruizhi, Tang Enling, Yang Guolai, et al. Experimental simulation of self-powered overload igniter based on Lead Zirconate Titanate[J]. Sensors and Actuators A: Physical, 2020, 314: 112222. doi: 10.1016/j.sna.2020.112222
    [31] 林强, 杜松健, 孙东, 等. 国内红外热像测温技术的研究现状及在测温节能方面的应用[J]. 石油石化节能, 2021, 11(3):17-20 doi: 10.3969/j.issn.2095-1493.2021.03.005

    Lin Qiang, Du Songjian, Sun Dong, et al. Research and application of infrared thermal imaging technology in China[J]. Energy Conservation in Petroleum & Petrochemical Industry, 2021, 11(3): 17-20 doi: 10.3969/j.issn.2095-1493.2021.03.005
    [32] Zhao Yong, Chen Maoqing, Lv Riqing, et al. Small and practical optical fiber fluorescence temperature sensor[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(10): 2406-2411. doi: 10.1109/TIM.2016.2575241
    [33] 康凯. 光纤荧光测温仪关键技术研究[D]. 北京: 中国航天科技集团公司第一研究院, 2018: 58-59

    Kang Kai. Research on the key technology of optical fiber fluorescent thermometer[D]. Beijing: The First Academy of China Aerospace Science and Technology Corporation, 2018: 58-59
    [34] Domínguez-Flores C E, Monzón-Hernández D, Moreno-Basulto J I, et al. Real-time temperature sensor based on in-fiber Fabry–Perot interferometer embedded in a resin[J]. Journal of Lightwave Technology, 2019, 37(4): 1084-1090. doi: 10.1109/JLT.2018.2886134
    [35] Wang Botao, Niu Yanxiong, Zheng Shaowei, et al. A high temperature sensor based on sapphire fiber Fabry-Perot interferometer[J]. IEEE Photonics Technology Letters, 2020, 32(2): 89-92. doi: 10.1109/LPT.2019.2957917
    [36] Zou Hui, Ma Lei, Xiong Hui, et al. Fiber ring laser sensor based on Fabry–Perot cavity interferometer for temperature sensing[J]. Laser Physics, 2017, 28: 015102.
    [37] Duplain G, Leduc C. Smart and reliable assessment of electromagnetic environmental effects on ordnance made easy[R]. Quebec: OpSens Inc. , 2014.
    [38] 马森. 高速砷化镓光纤温度传感技术及应用研究[D]. 信阳: 信阳师范学院, 2021: 23-24

    Ma Sen. Study on high-speed GaAs optical fiber temperature sensing technology and its application[D]. Xinyang: Xinyang Normal University, 2021: 23-24
    [39] Lee K R, Bennett J E, Pinkston W H. Improved measurement techniques of bridgewire heating caused by induced electromagnetic radiation[C]//Proceedings of 1987 IEEE International Symposium on Electromagnetic Compatibility. 1987: 1-4.
    [40] 王韶光, 魏光辉, 陈亚洲. 电火工品电磁危害的光纤测试方法[J]. 高电压技术, 2007, 32(5):6-10 doi: 10.3969/j.issn.1003-6520.2007.05.002

    Wang Shaoguang, Wei Guanghui, Chen Yazhou. Optic-fiber test method for electromagnetic hazards of EED[J]. High Voltage Engineering, 2007, 32(5): 6-10 doi: 10.3969/j.issn.1003-6520.2007.05.002
    [41] Kichouliya R, Devender, Ramasarma V V, et al. Hazards of electromagnetic radiation to ordnance (HERO) assessment of electro-explosive devices and validation of extrapolation method for estimation of the safety margin at HERO electromagnetic environments[C]//Proceedings of 2011 IEEE International Symposium on Electromagnetic Compatibility. 2011: 946-953.
    [42] 赵团, 封青梅, 姚洪志, 等. 电火工品感应电流定量测试技术研究[J]. 火工品, 2013(5):50-52 doi: 10.3969/j.issn.1003-1480.2013.05.013

    Zhao Tuan, Feng Qingmei, Yao Hongzhi, et al. Study on the quantitative test technique of EED induced current[J]. Initiators & Pyrotechnics, 2013(5): 50-52 doi: 10.3969/j.issn.1003-1480.2013.05.013
    [43] Xin Liwei, Wang Tao, Tian Jinshou, et al. Induced current measurement in bridgewire EED through infrared optical fiber image bundle[C]//Proceedings of SPIE 8905, International Symposium on Photoelectronic Detection and Imaging 2013: Laser Sensing and Imaging and Applications. 2013: 890518.
    [44] Lu Xinfu, Wei Guanghui, Sun Yongwei, et al. Temperature rise test method of hot bridgewire EED under steady conditions[C]//Proceedings of 2019 IEEE 6th International Symposium on Electromagnetic Compatibility. 2019: 1-4.
    [45] 赵团, 张蕊, 姚洪志, 等. 射频电磁环境中火箭弹安全性评估[J]. 兵工学报, 2020, 41(s2):299-304

    Zhao Tuan, Zhang Rui, Yao Hongzhi, et al. Estimation on the safety of rocket projectile in RF electromagnetic environment[J]. Acta Armamentarii, 2020, 41(s2): 299-304
    [46] Wang Biao, Sun Yongwei, Wang Xuetian, et al. Equivalent test method for strong electromagnetic field radiation effect of EED[J]. International Journal of Antennas and Propagation, 2021, 2021: 7331428.
    [47] Wang Biao, Sun Yongwei, Wei Guanghui, et al. Research on test method of ignition temperature of electric explosive device under electromagnetic pulse[J]. Radioengineering, 2021, 30(3): 510-516. doi: 10.13164/re.2021.0510
    [48] 祁超, 魏光辉, 潘晓东, 等. 电磁脉冲串重复率变化对数字通信电台的影响[J]. 强激光与粒子束, 2018, 30:103207 doi: 10.11884/HPLPB201830.180112

    Qi Chao, Wei Guanghui, Pan Xiaodong, et al. Effect of variation of electromagnetic pulse repetition rate on digital communication stations[J]. High Power Laser and Particle Beams, 2018, 30: 103207 doi: 10.11884/HPLPB201830.180112
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  516
  • HTML全文浏览量:  222
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-14
  • 修回日期:  2023-01-04
  • 录用日期:  2023-01-04
  • 网络出版日期:  2023-03-13
  • 刊出日期:  2023-05-06

目录

    /

    返回文章
    返回