留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于200 kV/15 A逆变型直流高压电源的控制策略

何开心 李青 夏于洋 张锦涛

何开心, 李青, 夏于洋, 等. 基于200 kV/15 A逆变型直流高压电源的控制策略[J]. 强激光与粒子束, 2023, 35: 066002. doi: 10.11884/HPLPB202335.220355
引用本文: 何开心, 李青, 夏于洋, 等. 基于200 kV/15 A逆变型直流高压电源的控制策略[J]. 强激光与粒子束, 2023, 35: 066002. doi: 10.11884/HPLPB202335.220355
He Kaixin, Li Qing, Xia Yuyang, et al. Direct current high voltage power control strategy based on 200 kV/15 A inverter[J]. High Power Laser and Particle Beams, 2023, 35: 066002. doi: 10.11884/HPLPB202335.220355
Citation: He Kaixin, Li Qing, Xia Yuyang, et al. Direct current high voltage power control strategy based on 200 kV/15 A inverter[J]. High Power Laser and Particle Beams, 2023, 35: 066002. doi: 10.11884/HPLPB202335.220355

基于200 kV/15 A逆变型直流高压电源的控制策略

doi: 10.11884/HPLPB202335.220355
基金项目: 四川省科技计划项目(2022101)
详细信息
    作者简介:

    何开心,hekaixin@swip.ac.cn

    通讯作者:

    李 青,liqing@swip.ac.cn

  • 中图分类号: TM8

Direct current high voltage power control strategy based on 200 kV/15 A inverter

  • 摘要: 针对传统三相三电平逆变器在较小占空比模式下输出电压纹波较大的不足,提出了一种新的双重控制策略。该策略通过控制直流母线电压大小与逆变器的占空比,从而实现对输出直流电压较大范围内的可控调整。建立200 kV/15 A的逆变型直流高压电源MATLAB/Simulink系统仿真模型,采用上述控制策略,实现了输出电压分别为200 kV和20 kV时,纹波均小于±1%,验证了新型控制策略在输出电压宽范围情况下,输出电压纹波能够满足负载要求。
  • 图  1  逆变型直流高压电源系统原理图

    Figure  1.  Inverter direct current high voltage power supply system

    图  2  二十四脉波相控整流单元主控制电路原理图

    Figure  2.  Main control circuit schematic diagram of twenty-four pulse phase-controlled rectifier unit

    图  3  A相桥臂上各开关管的开关时间变化

    Figure  3.  Switching time variation of each switch tube on phase A bridge arm

    图  4  逆变型直流高压电源输出特性曲线

    Figure  4.  Output characteristic curves of inverter DC high voltage power supply

    图  5  逆变型直流高压电源控制原理框架

    Figure  5.  Control principal framework of inverter direct current high voltage power supply

    图  6  目标输出电压为200 kV时,目标输出电压波形

    Figure  6.  Target output voltage waveforms at 200 kV

    图  7  目标输出电压为20 kV时,目标输出电压波形

    Figure  7.  Target output voltage waveforms at 20 kV

    表  1  200 kV逆变型直流高压电源MATLAB/Simulink仿真模型各元件参数

    Table  1.   Component parameters of MATLAB/Simulink simulation model of 200 kV inverter DC high-voltage power supply

    component namecomponent parameters
    input AC voltage10 kV
    AC grid frequency50 Hz
    rated capacity of phase shifting transformer80 MV·A
    rated voltage of phase shifting transformer10 kV/1.1 kV/1.1 kV
    DC bus choke inductor1 mH
    DC bus capacitor450 mF
    frequency of inverter150 Hz
    isolated booster transformer capacity18 MV·A
    isolated booster transformer frequency150 Hz
    rated voltage of isolated boost transformer3.48 kV/142.25 kV
    high voltage filter resistor68 Ω
    high voltage filter capacitor300 nF
    下载: 导出CSV
  • [1] 章雪亮. 聚变装置辅助加热系统逆变型直流高压电源技术研究[D]. 武汉: 华中科技大学, 2016

    Zhang Xueliang. Research on the technology of inverter type DC high voltage power supply for auxiliary heating system of fusion device[D]. Wuhan: Huazhong University of Science and Technology, 2016
    [2] 章雪亮. CFETR N-NBI样机加速器高压电源设计与关键技术研究[D]. 武汉: 华中科技大学, 2019

    Zhang Xueliang. Research and design of the acceleration grid power supply of CFETR N-NBI prototype[D]. Wuhan: Huazhong University of Science and Technology, 2019
    [3] 夏令龙. 托卡马克辅助加热系统高压电源若干关键技术研究[D]. 武汉: 华中科技大学, 2015

    Xia Linglong. The study on several key techniques of high voltage power supply for auxiliary heating system in tokamaks[D]. Wuhan: Huazhong University of Science and Technology, 2015
    [4] 王一农, 杜世俊, 刘小宁, 等. EAST中性束注入器加速极电源设计[J]. 合肥工业大学学报(自然科学版), 2005, 28(10):1292-1295

    Wang Yinong, Du Shijun, Liu Xiaoning, et al. Design of the power supply for the acceleration grids of the neutral beam injectors of the EAST tokamak[J]. Journal of Hefei University of Technology (Natural Science), 2005, 28(10): 1292-1295
    [5] 张明, 周澜, 王姝, 等. 基于负离子的中性束注入器加速极逆变型高压电源控制策略[J]. 强激光与粒子束, 2019, 31:040012 doi: 10.11884/HPLPB201931.180265

    Zhang Ming, Zhou Lan, Wang Shu, et al. Control strategy for inverter type high voltage power supply for negative-ion based neutral beam injector[J]. High Power Laser and Particle Beams, 2019, 31: 040012 doi: 10.11884/HPLPB201931.180265
    [6] 王威. 高压逆变电源控制方案研究[D]. 武汉: 华中科技大学, 2005

    Wang Wei. Research on control scheme for high-voltage inverter[D]. Wuhan: Huazhong University of Science and Technology, 2005
    [7] 李良威, 李群湛, 刘炜. 24脉波整流器外特性仿真及其在城市轨道交通中的应用[J]. 城市轨道交通研究, 2007, 10(10):52-55 doi: 10.3969/j.issn.1007-869X.2007.10.014

    Li Liangwei, Li Qunzhan, Liu Wei. Simulation and application of external characteristic curve of 24-pulse rectifier in urban rail transit[J]. Urban Mass Transit, 2007, 10(10): 52-55 doi: 10.3969/j.issn.1007-869X.2007.10.014
    [8] 张伟, 杜慧聪, 齐铂金, 等. 150kV/30kW逆变式电子束焊接高压电源设计[J]. 北京航空航天大学学报, 2014, 40(11):1531-1536 doi: 10.13700/j.bh.1001-5965.2013.0715

    Zhang Wei, Du Huicong, Qi Bojin, et al. 150kV/30kW inverter for electron beam welding power supply design[J]. Journal of Beijing University of Aeronautics and Astronsutics, 2014, 40(11): 1531-1536 doi: 10.13700/j.bh.1001-5965.2013.0715
    [9] Ma Mingyao, Meng Na, Wang Hanyu, et al. Online monitoring of IGBT modules based on creating the non-interventional monitoring environment[J]. Microelectronics Reliability, 2021, 126: 114220. doi: 10.1016/j.microrel.2021.114220
    [10] 杨恩清. 三电平逆变器在永磁同步电机驱动系统中的应用[D]. 重庆: 重庆大学, 2015

    Yang Enqing. Application of three-level inverter in permanent magnet synchronous motor drive system[D]. Chongqing: Chongqing University, 2015
    [11] 胡刚. 三电平高压变频调速系统保护原理与实现技术研究[D]. 武汉: 华中科技大学, 2007

    Hu Gang. Research on protection theory and realization for high voltage three-level converter[D]. Wuhan: Huazhong University of Science and Technology, 2007
    [12] Toigo V, Zanotto L, Bigi M, et al. Progress of the ITER NBI acceleration grid power supply reference design[J]. Fusion Engineering and Design, 2013, 88(6/8): 956-959.
    [13] 李亚维, 谢敏, 蓝欣, 等. 200 kV低纹波高稳定度直流高压电源[J]. 强激光与粒子束, 2016, 28:015016 doi: 10.11884/HPLPB201628.015016

    Li Yawei, Xie Min, Lan Xin, et al. A 200 kV high voltage DC power supply with high stability and low ripple[J]. High Power Laser and Particle Beams, 2016, 28: 015016 doi: 10.11884/HPLPB201628.015016
    [14] Wang Dongyu, Yang Shu, Zhang Ming, et al. Concept design of the control method for the NBI acceleration grid power supply-conversion system of CFETR[J]. Fusion Engineering and Design, 2021, 165: 112253. doi: 10.1016/j.fusengdes.2021.112253
    [15] Wang Dongyu, Zhang Ming, Ma Shaoxiang, et al. Design and control of the accelerator grid power supply-conversion system applied to CFETR N-NBI prototype[J]. Plasma Science and Technology, 2020, 22: 085601. doi: 10.1088/2058-6272/ab8d9c
    [16] 赵远哲, 胡纯栋, 谢远来, 等. CFETR NBI控制系统概念设计[J]. 核电子学与探测技术, 2021, 41(6):1066-1073 doi: 10.3969/j.issn.0258-0934.2021.06.023

    Zhao Yuanzhe, Hu Chundong, Xie Yuanlai, et al. Conceptual design of CFETR NBI control system[J]. Nuclear Electronics & Detection Technology, 2021, 41(6): 1066-1073 doi: 10.3969/j.issn.0258-0934.2021.06.023
    [17] Suresh K, Parimalasundar E. A novel dual-leg DC-DC converter for wide range DC-AC conversion[J]. Automatika, 2022, 63(3): 572-579. doi: 10.1080/00051144.2022.2056809
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  360
  • HTML全文浏览量:  159
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-03
  • 修回日期:  2023-03-09
  • 录用日期:  2023-03-31
  • 网络出版日期:  2023-04-07
  • 刊出日期:  2023-05-06

目录

    /

    返回文章
    返回