留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离子体鞘套低频通信电磁波透射率与辐照微波场强关系仿真研究

陈煜青 王蕾 赵立山 贺军涛

陈煜青, 王蕾, 赵立山, 等. 等离子体鞘套低频通信电磁波透射率与辐照微波场强关系仿真研究[J]. 强激光与粒子束, 2023, 35: 089001. doi: 10.11884/HPLPB202335.220361
引用本文: 陈煜青, 王蕾, 赵立山, 等. 等离子体鞘套低频通信电磁波透射率与辐照微波场强关系仿真研究[J]. 强激光与粒子束, 2023, 35: 089001. doi: 10.11884/HPLPB202335.220361
Chen Yuqing, Wang Lei, Zhao Lishan, et al. Simulation study of the relationship between low-frequency communication EM wave transmissivity of plasma sheaths and irradiation microwave E-field strength[J]. High Power Laser and Particle Beams, 2023, 35: 089001. doi: 10.11884/HPLPB202335.220361
Citation: Chen Yuqing, Wang Lei, Zhao Lishan, et al. Simulation study of the relationship between low-frequency communication EM wave transmissivity of plasma sheaths and irradiation microwave E-field strength[J]. High Power Laser and Particle Beams, 2023, 35: 089001. doi: 10.11884/HPLPB202335.220361

等离子体鞘套低频通信电磁波透射率与辐照微波场强关系仿真研究

doi: 10.11884/HPLPB202335.220361
基金项目: 国防科技大学前沿交叉学科学院重大基础自主研究项目(ZDJC19-11); 国防科技大学前沿交叉学科学院自主科研基金项目(22-ZZKY-07);国家自然科学基金项目(12205369)
详细信息
    作者简介:

    陈煜青,m15668741620@163.com

    通讯作者:

    贺军涛,hjt0731@163.com

  • 中图分类号: O539

Simulation study of the relationship between low-frequency communication EM wave transmissivity of plasma sheaths and irradiation microwave E-field strength

  • 摘要: 高超声速飞行器飞行期间,由于表面激波的影响,飞行器表面会生成等离子体鞘套。等离子体鞘套会吸收、反射和散射电磁波,导致通信信号发生衰减甚至中断,从而形成“黑障”问题。理论上来说,等离子体鞘套与微波的相互作用随微波电场幅值的变化呈现非线性,所以可能存在一个合适的电场幅值和辐照时间区间,使等离子体鞘套的电磁波透射率上升。针对这种可能性,采用有限元分析方法,对飞行器表面等离子体鞘套流场与电磁场进行二维耦合仿真,得到微波照射后等离子体鞘套透射率的改变情况。分别使用电场幅值为5×104、1×105、2.5×105、5×105 V·m−1的微波对等离子体鞘套进行30 ns的辐照,在辐照后等离子体鞘套对1.2 GHz和1.6 GHz的电磁波的最大透射率提升,为解决“黑障”问题提供了新的可能。
  • 图  1  飞行器几何结构及周围流场示意图

    Figure  1.  Schematic diagram of hypersonic vehicle geometry and surrounding flow field

    图  2  电磁波入射方向及模型边界条件示意图

    Figure  2.  Electromagnetic wave incident direction and model boundary conditions

    图  3  等离子体鞘套参数分布

    Figure  3.  Parameter distribution of plasma sheath

    图  4  飞行器轴线等离子体密度分布

    Figure  4.  Plasma density distribution along vehicle axis

    图  5  不同电场幅值的微波的磁场分布

    Figure  5.  Magnetic field distribution of microwaves with different E-field amplitudes

    图  6  经过30 ns辐照后等离子体振荡频率和碰撞频率的变化

    Figure  6.  Changes of plasma frequency and collision frequency after 30 ns irradiation

    图  7  透射率随时间变化

    Figure  7.  Transmissivity changes with irradiation time

    图  8  均匀等离子体平板模型

    Figure  8.  Homogeneous plasma plate mode

    表  1  化学反应式

    Table  1.   Chemical reaction

    No.chemical equation
    1,2,3$\mathrm{N}_2+M_1^{\mathrm{a}} \rightleftharpoons \mathrm{N}+\mathrm{N}+M_1^{\mathrm{a}}$
    4,5$\mathrm{N}_2+M_1^{\mathrm{b}} \rightleftharpoons \mathrm{N}+\mathrm{N}+M_1^{\mathrm{b}}$
    6,7,8$\mathrm{O}_2+M_2^{\mathrm{a}} \rightleftharpoons \mathrm{O}+\mathrm{O}+M_2^{\mathrm{a}}$
    9,10$\mathrm{O}_2+M_2^{\mathrm{b}} \rightleftharpoons \mathrm{O}+\mathrm{O}+M_2^{\mathrm{b}}$
    11,12,13$\mathrm{NO}+M_3^{\mathrm{a}} \rightleftharpoons \mathrm{N}+\mathrm{O}+M_3^{\mathrm{a}}$
    14,15$\mathrm{NO}+M_3^{\mathrm{b}} \rightleftharpoons \mathrm{N}+\mathrm{O}+M_3^{\mathrm{b}}$
    16$\mathrm{N}_2+\mathrm{O} \rightleftharpoons \mathrm{NO}+\mathrm{N}$
    17$\mathrm{NO}+\mathrm{O} \rightleftharpoons \mathrm{O}_2+\mathrm{N}$
    18$\mathrm{N}+\mathrm{O} \rightleftharpoons \mathrm{NO}^{+}+\mathrm{e}^{-}$
    下载: 导出CSV

    表  2  最大透射率

    Table  2.   Maximum transmissivity

    frequency/GHzE/(kV·m−1)maximum transmissivity/%irradiation time/ns
    1.2021.00
    1.25071.130
    1.210073.330
    1.225070.426
    1.250046.52
    1.6027.70
    1.65071.830
    1.610073.730
    1.625070.724
    1.650046.02
    下载: 导出CSV
  • [1] 龚旻, 谭杰, 李大伟, 等. 临近空间高超声速飞行器黑障问题研究综述[J]. 宇航学报, 2018, 39(10):1059-1070 doi: 10.3873/j.issn.1000-1328.2018.10.001

    Gong Min, Tan Jie, Li Dawen, et al. Review of blackout problems of near space hypersonic vehicles[J]. Journal of Astronautics, 2018, 39(10): 1059-1070 doi: 10.3873/j.issn.1000-1328.2018.10.001
    [2] 徐茂格, 席文君. 近空间高超音速飞行器射频通信“黑障”研究[J]. 电讯技术, 2009, 49(10):49-52 doi: 10.3969/j.issn.1001-893x.2009.10.011

    Xu Maoge, Xi Wenjun. Study on blackout in near space hypersonic vehicle radio frequency communication[J]. Telecommunication Engineering, 2009, 49(10): 49-52 doi: 10.3969/j.issn.1001-893x.2009.10.011
    [3] Blazek J. Computational fluid dynamics: principles and applications[M]. 3rd ed. Britain: Butterworth-Heinemann, 2015: 20-57.
    [4] Ouyang Wenchong, Liu Yanming. Impact of ionization rate on the transmission of electromagnetic wave in realistic plasma[J]. Physics of Plasmas, 2020, 27: 033507. doi: 10.1063/1.5135607
    [5] Bian Zheng, Li Jiangting, Guo Lixin. Simulation and feature extraction of the dynamic electromagnetic scattering of a hypersonic vehicle covered with plasma sheath[J]. Remote Sensing, 2020, 12: 2740. doi: 10.3390/rs12172740
    [6] 梁晓庚, 田宏亮. 临近空间高超声速飞行器发展现状及其防御问题分析[J]. 航空兵器, 2016(4):3-10 doi: 10.19297/j.cnki.41-1228/tj.2016.04.001

    Liang Xiaogeng, Tian Hongliang. Analysis of the development status and the defense problem of near space hypersonic vehicle[J]. Aero Weaponry, 2016(4): 3-10 doi: 10.19297/j.cnki.41-1228/tj.2016.04.001
    [7] 于哲峰, 刘佳琪, 刘连元, 等. 临近空间高超声速飞行器RCS特性研究[J]. 宇航学报, 2014, 35(6): 713-719

    Yu Zhefeng, Liu Jiaqi, Liu Lianyuan, et al. Research on the RCS characteristics of hypersonic near space vehicle[J]. Journal of Astronautics, 35(6): 713-719
    [8] 于哲峰, 孙良奎, 马平, 等. 黑障对通信安全的影响及几种可能的解决方案[J]. 红外, 2017, 38(2):39-45 doi: 10.3969/j.issn.1672-8785.2017.02.007

    Yu Zhefeng, Sun Liangkui, Ma Ping, et al. Influence of blackout on communication security and several possible solutions[J]. Infrared, 2017, 38(2): 39-45 doi: 10.3969/j.issn.1672-8785.2017.02.007
    [9] Ouyang Wenchong, Jin Tao, Wu Zhengwei, et al. Study of terahertz wave propagation in realistic plasma sheath for the whole reentry process[J]. IEEE Transactions on Plasma Science, 2021, 49(1): 460-465. doi: 10.1109/TPS.2020.3042220
    [10] Sternberg N, Smolyakov A I. Resonant transmission of electromagnetic waves in multilayer dense-plasma structures[J]. IEEE Transactions on Plasma Science, 2009, 37(7): 1251-1260. doi: 10.1109/TPS.2009.2020399
    [11] Hodara H. The use of magnetic fields in the elimination of the re-entry radio blackout[J]. Proceedings of the IRE, 1961, 49(12): 1825-1830. doi: 10.1109/JRPROC.1961.287709
    [12] Shashurin A, Zhuang T, Teel G, et al. Laboratory modeling of the plasma layer at hypersonic flight[J]. Journal of Spacecraft and Rockets, 2014, 51(3): 838-846. doi: 10.2514/1.A32771
    [13] Keidar M, Kim M, Boyd I D. Electromagnetic reduction of plasma density during atmospheric reentry and hypersonic flights[J]. Journal of Spacecraft and Rockets, 2008, 45(3): 445-453. doi: 10.2514/1.32147
    [14] Li Ji, He Mang, Li Xiuping, et al. Multiphysics modeling of electromagnetic wave-hypersonic vehicle interactions under high-power microwave illumination: 2-D case[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(7): 3653-3664. doi: 10.1109/TAP.2018.2835300
    [15] Li Zhigang, Yuan Zhongcai, Wang Jiachun, et al. Simulation of propagation of the HPM in the low-pressure argon plasma[J]. Plasma Science and Technology, 2017, 20: 025401.
    [16] Kundrapu M, Loverich J, Beckwith K, et al. Modeling radio communication blackout and blackout mitigation in hypersonic vehicles[J]. Journal of Spacecraft and Rockets, 2015, 52(3): 853-862. doi: 10.2514/1.A33122
    [17] 韦毅. 高超飞行器等离子体鞘套的多场耦合数值研究[D]. 哈尔滨: 哈尔滨工业大学, 2017: 18-25

    Wei Y. Multi-field coupling numerical study on plasmasonic sheath of hypersonic flying craft[D]. Harbin: Harbin Institute of Technology, 2017: 18-25.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  443
  • HTML全文浏览量:  137
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-12
  • 修回日期:  2023-04-15
  • 录用日期:  2023-03-28
  • 网络出版日期:  2023-05-15
  • 刊出日期:  2023-08-15

目录

    /

    返回文章
    返回