留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳秒激光诱导光学元件后表面损伤过程中的爆炸流场及喷溅行为

远航 梁凌熙 李宇芯 淡自强 朱成禹

远航, 梁凌熙, 李宇芯, 等. 纳秒激光诱导光学元件后表面损伤过程中的爆炸流场及喷溅行为[J]. 强激光与粒子束, 2023, 35: 061002. doi: 10.11884/HPLPB202335.220395
引用本文: 远航, 梁凌熙, 李宇芯, 等. 纳秒激光诱导光学元件后表面损伤过程中的爆炸流场及喷溅行为[J]. 强激光与粒子束, 2023, 35: 061002. doi: 10.11884/HPLPB202335.220395
Yuan Hang, Liang Lingxi, Li Yuxin, et al. Evolution of explosion plume on the rear surface of silica elements in nanosecond laser damaging[J]. High Power Laser and Particle Beams, 2023, 35: 061002. doi: 10.11884/HPLPB202335.220395
Citation: Yuan Hang, Liang Lingxi, Li Yuxin, et al. Evolution of explosion plume on the rear surface of silica elements in nanosecond laser damaging[J]. High Power Laser and Particle Beams, 2023, 35: 061002. doi: 10.11884/HPLPB202335.220395

纳秒激光诱导光学元件后表面损伤过程中的爆炸流场及喷溅行为

doi: 10.11884/HPLPB202335.220395
基金项目: 国家自然科学基金项目(61905052)
详细信息
    作者简介:

    远 航,yuanhang@hit.edu.cn

    通讯作者:

    朱成禹,zhuchy@hit.edu.cn

  • 中图分类号: O436

Evolution of explosion plume on the rear surface of silica elements in nanosecond laser damaging

  • 摘要: 紫外光学元件损伤动力学的研究是关联物质微观结构演化与光学元件宏观性质变化的重要纽带。在光学元件后表面损伤坑形成的过程中,激光能量沉积导致材料爆炸形成高温高压物质突破表面,并伴随形成爆炸流场和喷溅射流。爆炸流场与初始起爆强度具有强关联性,对爆炸流场及喷溅行为进行研究,可以帮助分析损伤初期的材料状态变化和响应机制,是损伤动力学研究的必需环节。基于多种时间分辨成像技术,捕获了损伤发展前期的材料电离和气化响应演化行为,分析了材料损伤起爆后气化电离等过程的弛豫时间,并确定各个行为转化的关键时间节点,描述了损伤区域能量快速释放的物理过程。
  • 图  1  双波长干涉实验光路

    Figure  1.  Schematic of interference imaging system with dual-wavelength probes

    BS, beam splitter; HR, reflector; SP, beam sampler; CS, color separator; PD, photon detector; EM, energy meter; NBF, narrow band filter; MS, microscope; FL, focus lens

    图  2  干涉图像获取流场信息提取流程

    Figure  2.  Extraction processing of phase shift information of interference image

    图  3  喷溅颗粒收集设置示意图及喷溅颗粒流的典型图像

    Figure  3.  Schematic of ejected particle collecting setup and typical image of the particle jets

    图  4  爆炸流场的相位分布和演化

    Figure  4.  Phase distribution evolution of the explosion plume

    图  5  后表面不同位置处的双波长探针相位偏移横向分布

    Figure  5.  Lateral distribution of phase shift of dual-wavelength probe at different position from rear surface inside damage plume

    图  6  收集板上的喷溅物分布

    Figure  6.  Ejection distribution on the collecting plate

    图  7  熔石英后表面紫外损伤的颗粒喷溅物的SEM图像

    Figure  7.  SEM images of particle ejection generated by UV laser induced rear surface damage of fused silica

    图  8  喷溅颗粒的飞行运动图像

    Figure  8.  Images of particle dynamic behavior

    图  9  光学元件后表面损伤行为过程

    Figure  9.  Optical elements damage process on the rear surface

  • [1] Spaeth M L, Wegner P J, Suratwala T I, et al. Optics recycle loop strategy for NIF operations above UV laser-induced damage threshold[J]. Fusion Science and Technology, 2016, 69(1): 265-294. doi: 10.13182/FST15-119
    [2] Chambonneau M, Lamaignère L. Multi-wavelength growth of nanosecond laser-induced surface damage on fused silica gratings[J]. Scientific Reports, 2018, 8(1): 891. doi: 10.1038/s41598-017-18957-9
    [3] Negres R A, Cross D A, Liao Z M, et al. Growth model for laser-induced damage on the exit surface of fused silica under UV, ns laser irradiation[J]. Optics Express, 2014, 22(4): 3824-3844. doi: 10.1364/OE.22.003824
    [4] Negres R A, Norton M A, Cross D A, et al. Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation[J]. Optics Express, 2010, 18(19): 19966-19976. doi: 10.1364/OE.18.019966
    [5] Laurence T A, Negres R A, Ly S, et al. Role of defects in laser-induced modifications of silica coatings and fused silica using picosecond pulses at 1053 nm: II. Scaling laws and the density of precursors[J]. Optics Express, 2017, 25(13): 15381-15401. doi: 10.1364/OE.25.015381
    [6] Negres R A, Raman R N, Bude J D, et al. Dynamics of transient absorption in bulk DKDP crystals following laser energy deposition[J]. Optics Express, 2012, 20(18): 20447-20458. doi: 10.1364/OE.20.020447
    [7] Raman R N, Negres R A, Demos S G. Kinetics of ejected particles during breakdown in fused silica by nanosecond laser pulses[J]. Applied Physics Letters, 2011, 98: 051901. doi: 10.1063/1.3549193
    [8] Demos S G, Negres R A, Raman R N, et al. Material response during nanosecond laser induced breakdown inside of the exit surface of fused silica[J]. Laser & Photonics Reviews, 2013, 7(3): 444-452.
    [9] Demos S G, Negres R A, Raman R N, et al. Relaxation dynamics of nanosecond laser superheated material in dielectrics[J]. Optica, 2015, 2(8): 765-772. doi: 10.1364/OPTICA.2.000765
    [10] Kanitz A, Kalus M R, Gurevich E L, et al. Review on experimental and theoretical investigations of the early stage, femtoseconds to microseconds processes during laser ablation in liquid-phase for the synthesis of colloidal nanoparticles[J]. Plasma Sources Science and Technology, 2019, 28: 103001. doi: 10.1088/1361-6595/ab3dbe
    [11] 赵元安, 邵建达, 刘晓凤, 等. 光学元件的激光损伤问题[J]. 强激光与粒子束, 2022, 34:011004 doi: 10.11884/HPLPB202234.210331

    Zhao Yuan’an, Shao Jianda, Liu Xiaofeng, et al. Tracking and understanding laser damage events in optics[J]. High Power Laser and Particle Beams, 2022, 34: 011004 doi: 10.11884/HPLPB202234.210331
    [12] 杨李茗, 黄进, 刘红婕, 等. 熔石英元件紫外脉冲激光辐照损伤特性研究进展综述[J]. 光学学报, 2022, 42:1714004 doi: 10.3788/AOS202242.1714004

    Yang Liming, Huang Jin, Liu Hongjie, et al. Review of research progress on damage characteristics of fused silica optics under ultraviolet pulsed laser irradiation[J]. Acta Optica Sinica, 2022, 42: 1714004 doi: 10.3788/AOS202242.1714004
    [13] Huang Jin, Liu Hongjie, Wang Fengrui, et al. Influence of bulk defects on bulk damage performance of fused silica optics at 355 nm nanosecond pulse laser[J]. Optics Express, 2017, 25(26): 33416-33428. doi: 10.1364/OE.25.033416
    [14] 郑万国, 祖小涛, 袁晓东, 等. 高功率激光装置的负载能力及其相关物理问题[M]. 北京: 科学出版社, 2014

    Zheng Wanguo, Zu Xiaotao, Yuan Xiaodong, et al. Damage resistance and physical problems of high power laser facilities[M]. Beijing: Science Press, 2014
    [15] Demos S G, Negres R A, Rubenchik A M. Dynamics of the plume containing nanometric-sized particles ejected into the atmospheric air following laser-induced breakdown on the exit surface of a CaF2 optical window[J]. Applied Physics Letters, 2014, 104: 031603. doi: 10.1063/1.4862815
    [16] Nguyen V H, Kalal M, Suk H, et al. Interferometric analysis of sub-nanosecond laser-induced optical breakdown dynamics in the bulk of fused-silica glass[J]. Optics Express, 2018, 26(12): 14999-15008. doi: 10.1364/OE.26.014999
    [17] Demos S G, Raman R N, Negres R A. Time-resolved imaging of processes associated with exit-surface damage growth in fused silica following exposure to nanosecond laser pulses[J]. Optics Express, 2013, 21(4): 4875-4888. doi: 10.1364/OE.21.004875
    [18] Peng Ge, Zhang Peng, Dong Zhe, et al. Spatial sputtering of fused silica after a laser-induced exploding caused by a 355 nm nd: YAG laser[J]. Frontiers in Physics, 2022, 10: 980249. doi: 10.3389/fphy.2022.980249
    [19] Bude J, Guss G, Matthews M, et al. The effect of lattice temperature on surface damage in fused silica optics[C]//Proceedings of SPIE 6270, Laser-induced Damage in Optical Materials. 2007.
    [20] Zhu Chengyu, Liang Lingxi, Yuan Hang, et al. Investigation of stress wave and damage morphology growth generated by laser-induced damage on rear surface of fused silica[J]. Optics Express, 2020, 28(3): 3942-3951. doi: 10.1364/OE.384036
  • 加载中
图(9)
计量
  • 文章访问数:  468
  • HTML全文浏览量:  153
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-28
  • 修回日期:  2023-03-15
  • 录用日期:  2023-02-22
  • 网络出版日期:  2023-03-24
  • 刊出日期:  2023-05-06

目录

    /

    返回文章
    返回