留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高功率宽频比C/X双频反射阵列天线设计

陈瑞 李相强 张健穹 王庆峰

陈瑞, 李相强, 张健穹, 等. 高功率宽频比C/X双频反射阵列天线设计[J]. 强激光与粒子束, 2023, 35: 063002. doi: 10.11884/HPLPB202335.220420
引用本文: 陈瑞, 李相强, 张健穹, 等. 高功率宽频比C/X双频反射阵列天线设计[J]. 强激光与粒子束, 2023, 35: 063002. doi: 10.11884/HPLPB202335.220420
Chen Rui, Li Xiangqiang, Zhang Jianqiong, et al. Design of high power wide frequency ratio C/X dual -band reflectarray antenna[J]. High Power Laser and Particle Beams, 2023, 35: 063002. doi: 10.11884/HPLPB202335.220420
Citation: Chen Rui, Li Xiangqiang, Zhang Jianqiong, et al. Design of high power wide frequency ratio C/X dual -band reflectarray antenna[J]. High Power Laser and Particle Beams, 2023, 35: 063002. doi: 10.11884/HPLPB202335.220420

高功率宽频比C/X双频反射阵列天线设计

doi: 10.11884/HPLPB202335.220420
基金项目: 四川省科技厅重点研发项目(2022YFG0248);中央高校基本科研业务费资助项目(2682021GF016)
详细信息
    作者简介:

    陈 瑞,crzz2@qq.com

    通讯作者:

    李相强,xiangqiang_li@163.com

  • 中图分类号: TN82

Design of high power wide frequency ratio C/X dual -band reflectarray antenna

  • 摘要: 为了满足高功率微波系统对宽频比双频辐射天线的研究需求,提出了一种可工作在C/X双频段的高功率圆极化反射阵列天线。天线单元采用介质埋藏的贴片单元形式,贴片部分由外圈的椭圆环贴片嵌套内圈的椭圆贴片组成,分别实现低频(C波段)和高频(X波段)的辐射。这种嵌套式的单元形式使得天线可以实现较宽的频比,同时由于单元采用无突变结构且单元被埋藏在介质中避免了三相点的出现,从而具有较高的功率容量。高低频段的两种贴片都采用绕轴旋转的方式来调节反射相位,可以在反射损耗较小的基础上满足360°的反射相位调节。基于以上双频辐射单元设计了一个口径尺寸为400 mm×400 mm的20×20矩形栅格排布反射阵列天线,设计结果表明天线在4.3 GHz下的增益为22.2 dBi,口径效率为40.2%,常压空气中的功率容量为10.4 MW;在10.4 GHz下的增益为29.9 dBi,口径效率为40.5%,常压空气中的功率容量为12.2 MW。该天线高低工作频率的频比达到2.4,且具有高效率和高功率容量的特点。
  • 图  1  高功率双频反射阵列天线示意图

    Figure  1.  Diagram of high-power dual-band reflectarray antenna

    图  2  反射阵列天线单元分离式和仿真模型

    Figure  2.  Diagram of the reflectarray unitary separation model and simulation model

    图  3  反射阵列天线单元模型图

    Figure  3.  Reflectarray unit model diagram

    图  4  反射阵列天线单元垂直极化入射时电场仿真结果

    Figure  4.  Reflectarray unit electric field simulation results for vertical polarization incidence

    图  5  反射阵列天线单元水平极化入射时电场仿真结果

    Figure  5.  Reflectarray unit electric field simulation results for horizontal polarization incidence

    图  6  反射阵列天线单元的反射相位响应和幅度响应

    Figure  6.  Simulated phase response and amplitude response of reflectarray unit

    图  7  高功率双频反射阵列天线φ =90°面的远场方向图和轴比图

    Figure  7.  Antenna farfield patterns and axial ratio diagram of high-power dual-band reflectarray antenna

    图  8  仅旋转单频段单元和正常情况下φ=90° 面方向图对比

    Figure  8.  Comparison between rotating single-band unit only and normal farfield patterns at φ=90° cut

    图  9  贴片的电场仿真结果

    Figure  9.  Electric field simulation results of the patch

    图  10  反射阵列表面的电场仿真结果

    Figure  10.  Electric field simulation results of reflectarray surface

  • [1] Lee B M, Lee W S, Yoon Y J, et al. X-band TM01-TE11 mode converter with short length for high power[J]. Electronics Letters, 2004, 40(18): 1126-1127. doi: 10.1049/el:20045306
    [2] Thomas B, James G, Greene K. Design of wide-band corrugated conical horns for Cassegrain antennas[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(6): 750-757. doi: 10.1109/TAP.1986.1143899
    [3] Vlasov S N, Orlova I M. Quasioptical transformer which transforms the waves in a waveguide having a circular cross section into a highly directional wave beam[J]. Radiophysics and Quantum Electronics, 1974, 17(1): 115-119. doi: 10.1007/BF01037072
    [4] 袁成卫, 凌根深. Vlasov辐射器反射特性研究[J]. 强激光与粒子束, 2003, 15(2):172-175

    Yuan Chengwei, Ling Genshen. Reflective characteristics of bevel-cut Vlasov radiator[J]. High Power Laser and Particle Beams, 2003, 15(2): 172-175
    [5] El Misilmani H, Al-Husseini M, Kabalan K Y, et al. Optimized reflector position for Vlasov antennas[C]//Electromagnetics Research Symposium Proceedings. 2013.
    [6] Courtney C C, Baum C E. The coaxial beam-rotating antenna (COBRA): theory of operation and measured performance[J]. IEEE Transactions on Antennas and Propagation, 2000, 48(2): 299-309. doi: 10.1109/8.833080
    [7] Li Xiangqiang, Liu Qingxiang, Zhang Jianqiong, et al. 16-element single-layer rectangular radial line helical array antenna for high-power applications[J]. IEEE Antennas and Wireless Propagation Letters, 2010, 9: 708-711. doi: 10.1109/LAWP.2010.2059371
    [8] Li Xiangqiang, Liu Qingxiang, Wu Xiaojiang, et al. A GW level high-power radial line helical array antenna[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(9): 2943-2948. doi: 10.1109/TAP.2008.928781
    [9] 李相强, 刘庆想, 赵柳, 等. 高功率双层径向线螺旋阵列天线实验研究[J]. 强激光与粒子束, 2006, 18(2):265-268

    Li Xiangqiang, Liu Qingxiang, Zhao Liu, et al. Experiment research of high power helical array antenna fed from double-layered radial waveguide[J]. High Power Laser and Particle Beams, 2006, 18(2): 265-268
    [10] Yuan Chengwei, Peng Shengren, Shu Ting, et al. Designs and experiments of a novel radial line slot antenna for high-power microwave application[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(10): 4940-4946. doi: 10.1109/TAP.2013.2273214
    [11] Guo Letian, Huang Wenhua, Chang Chao, et al. Studies of a leaky-wave phased array antenna for high-power microwave applications[J]. IEEE Transactions on Plasma Science, 2016, 44(10): 2366-2375. doi: 10.1109/TPS.2016.2601105
    [12] Campbell S D, Mackertich-Sengerdy G, Binion J D, et al. Metamaterial-enabled reflectarray antennas for high-power microwave applications[C]//Proceedings of 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting. 2020: 651-652.
    [13] Gregory M D, Bossard J A, Morgan Z C P O, et al. Metamaterials for high power reflectarray design[C]//Proceedings of 2016 IEEE/ACES International Conference on Wireless Information Technology and Systems (ICWITS) and Applied Computational Electromagnetics (ACES). 2016: 1-2.
    [14] 孔歌星, 李相强, 张健穹, 等. X波段高功率宽频带双螺旋反射阵列天线的设计[J]. 强激光与粒子束, 2019, 31:093001 doi: 10.11884/HPLPB201931.190084

    Kong Gexing, Li Xiangqiang, Zhang Jianqiong, et al. Design of X-band high power wideband dual-helical reflectarray antenna[J]. High Power Laser and Particle Beams, 2019, 31: 093001 doi: 10.11884/HPLPB201931.190084
    [15] Kong Gexing, Li Xiangqiang, Wang Qingfeng, et al. A dual-band circularly polarized elliptical patch reflectarray antenna for high-power microwave applications[J]. IEEE Access, 2021, 9: 74522-74530. doi: 10.1109/ACCESS.2021.3080823
    [16] Deng Ruyuan, Xu Shenheng, Yang Fan, et al. Single-layer dual-band reflectarray antennas with wide frequency ratios and high aperture efficiencies using phoenix elements[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(2): 612-622. doi: 10.1109/TAP.2016.2639023
    [17] Sun Yunfei, Dang Fangchao, Yuan Chengwei, et al. A beam-steerable lens antenna for Ku-band high-power microwave applications[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(11): 7580-7583. doi: 10.1109/TAP.2020.2979282
  • 加载中
图(10)
计量
  • 文章访问数:  492
  • HTML全文浏览量:  184
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-22
  • 修回日期:  2023-03-12
  • 录用日期:  2023-03-08
  • 网络出版日期:  2023-03-18
  • 刊出日期:  2023-05-06

目录

    /

    返回文章
    返回