留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

雷电对机载导弹的间接效应仿真分析

范光程 袁飞马 章磊 雷御虎 阳刚 李科连

范光程, 袁飞马, 章磊, 等. 雷电对机载导弹的间接效应仿真分析[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240065
引用本文: 范光程, 袁飞马, 章磊, 等. 雷电对机载导弹的间接效应仿真分析[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240065
Fan Guangcheng, Yuan Feima, Zhang Lei, et al. Simulation analysis of indirect effects of lightning on airborne missiles[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240065
Citation: Fan Guangcheng, Yuan Feima, Zhang Lei, et al. Simulation analysis of indirect effects of lightning on airborne missiles[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240065

雷电对机载导弹的间接效应仿真分析

doi: 10.11884/HPLPB202436.240065
详细信息
    作者简介:

    范光程,m18354226306@163.com

  • 中图分类号: V242

Simulation analysis of indirect effects of lightning on airborne missiles

  • 摘要: 导弹作为军机的挂载,在雷电特殊环境中存在遭受雷击风险。为了提高机载导弹的雷电防护,根据标准SAE ARP5416的试验方法在CST中搭建仿真环境,对“军机挂载导弹”模型采用静电场仿真进行雷电附着1A区划分,并采用注入电流法仿真模型遭遇雷击时的间接效应。仿真结果表明:导弹导引头固定后沿(金属部分)和尾翼翼尖易遭受雷电初始附着,当雷电附着于导弹导引头固定后沿时,雷达罩内的电磁场环境最为恶劣,并且碳纤维复合材料(CFRP)舱段内产生的强电场环境和线缆的高感应电压会损坏弹内设备,而CFRP镀铝可将舱段内电场强度和线缆感应电压降低两个数量级,有着良好的雷电电磁屏蔽效果。
  • 图  1  雷电A电流分量电流波形和频谱分布图

    Figure  1.  Structural schematic diagram of military aircraft carrying cruise missiles

    图  2  军机挂载导弹的模型示意图

    Figure  2.  Structural schematic diagram of military aircraft carrying missiles

    图  3  单位电荷下的模型感应电场强度分布图

    Figure  3.  Electric field intensity distribution diagram of the model based on unit charge

    图  4  电极放电位置示意图

    Figure  4.  Schematic diagram of electrode discharge positions

    图  5  不同棒状电极位置处导弹头部边沿与尾翼翼尖的感应电场强度百分比

    Figure  5.  Percentage of induced electricfield intensity at the head edge of missiles and the tail tip of missiles in various discharge positions of rod-electrode

    图  6  不同平板电极位置处导弹头部边沿与尾翼翼尖的感应电场强度百分比

    Figure  6.  Percentage of induced electricfield intensity at the head edge of missiles and the tail tip of missiles in various discharge positions of polar-plate

    图  7  导弹内部线缆布置及连接图

    Figure  7.  Cable layout diagram and cable connection diagram inside the missile

    图  8  导弹遭受雷电附着时电流和电磁场分布图

    Figure  8.  Distribution diagrams of the current and electromagnetic field when the missile is struck by lightning

    图  9  导弹内部探针处电场强度变化曲线

    Figure  9.  Curves of the electric field intensity variation at the probes inside missile

    图  10  5条雷击路径下导弹内部P3、P6处的电场强度变化曲线

    Figure  10.  Electric field intensity variation curves at the probes of P3 and P6 based on five lightning strike paths

    图  11  雷电从导弹1头部边沿进入从军机尾翼翼尖击出时的线缆感应电压变化曲线

    Figure  11.  Induced voltage variation curves of cables when Lightning enters from the head of misslie1 and exits from the vertical tail tip of aircraft

    图  12  4种不同雷击路径下导弹内Shield-AF200线缆感应电压变化曲线

    Figure  12.  Induced voltage variation curves of the Shield-AF200 cables based on four different lightning strike paths

    图  13  舱段1的电流密度分布图

    Figure  13.  Current density distribution diagrams of cabin1

    图  14  不同金属镀层厚度下P3处的电场强度曲线和Cable3的感应电压曲线

    Figure  14.  Electric field intensity curves at the probe of P3 and induced voltage curves of the Cable3 under different thickness of thin metal layer

    表  1  军机与导弹材质的电参数

    Table  1.   Electrical parameter of military aircraft and cruise missile materials

    physical quantilymaterialelectrical conductivity/(S·m−1)relative dielectric constantrelative permeability
    military aircraftaluminium alloy (7050)2.9×10711
    glass cockpitorganic glass03.41
    cruise missilealuminium alloy (ZL114A)2.16×10711
    radomefiberglass reinforced plastic composite material041
    hang beamduralumin alloy (ZL205A)1.35×10711
    missile launcherduralumin alloy (ZL205A)1.35×10711
    下载: 导出CSV
  • [1] 周萍, 吕英华, 陈志红, 等. 航天系统雷电防护技术发展综述及展望[J]. 宇航学报, 2018, 39(8):827-837 doi: 10.3873/j.issn.1000-1328.2018.08.001

    Zhou Ping, Lv Yinghua, Chen Zhihong, et al. Review and prospect of lightning protection technology for an astronautic system[J]. Journal of Astronautics, 2018, 39(8): 827-837 doi: 10.3873/j.issn.1000-1328.2018.08.001
    [2] 黄立洋, 陈晓宁, 郭飞, 等. 直升机雷电间接效应数值仿真[J]. 强激光与粒子束, 2015, 27:083205 doi: 10.11884/HPLPB201527.083205

    Huang Liyang, Chen Xiaoning, Guo Fei, et al. Numerical simulation of lightning indirect effects on helicopter[J]. High Power Laser and Particle Beams, 2015, 27: 083205 doi: 10.11884/HPLPB201527.083205
    [3] 徐宏伟. 无人机雷电防护设计技术综述[J]. 飞机设计, 2021, 41(4):65-73

    Xu Hongwei. Review of lightning protection design technology for unmanned aerial vehicle[J]. Aircraft Design, 2021, 41(4): 65-73
    [4] 刘琳. C919试飞供电系统闪电防护仿真研究[D]. 南京: 南京航空航天大学, 2017: 16-24

    Liu Lin. Simulation and research of lighting protection on power supply system for flight test of C919 airplane[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017: 16-24
    [5] Huang Liyang, Gao Cheng, Guo Fei, et al. Lightning indirect effects on helicopter: numerical simulation and experiment validation[J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 59(4): 1171-1179. doi: 10.1109/TEMC.2017.2651900
    [6] Jo J, Kim Y, Kim D, et al. Effect of shielding and drain wire on lightning-induced currents in rotorcraft cables[J]. IEEE Transactions on Electromagnetic Compatibility, 2022, 64(6): 2015-2023. doi: 10.1109/TEMC.2022.3198697
    [7] 张起浩. 复合材料飞机雷电间接效应电磁屏蔽及影响因素分析[D]. 天津: 中国民航大学, 2022: 10-42

    Zhang Qihao. Analysis of electromagnetic shielding and influencing factors of composite aircraft lightning indirect effects[D]. Tianjin: Civil Aviation University of China, 2022: 10-42
    [8] 杨占刚, 张起浩, 柯中澍, 等. 飞机雷电耦合机理及屏蔽性能影响因素分析[J]. 系统工程与电子技术, 2023, 45(4):991-999 doi: 10.12305/j.issn.1001-506X.2023.04.07

    Yang Zhangang, Zhang Qihao, Ke Zhongshu, et al. Analysis of aircraft lightning coupling mechanism and shielding effectiveness factors[J]. Systems Engineering and Electronics, 2023, 45(4): 991-999 doi: 10.12305/j.issn.1001-506X.2023.04.07
    [9] 赵天, 王维, 李雪, 等. 民用航空发动机短舱雷电防护设计及验证[J]. 航空发动机, 2021, 47(1):1-6

    Zhao Tian, Wang Wei, Li Xue, et al. Design and verification of lightning protection in civil aeroengine nacelle system[J]. Aeroengine, 2021, 47(1): 1-6
    [10] 巩翰林, 姚兰玉, 张铁纯, 等. 直升机雷电间接效应及耦合机理仿真[J]. 中国舰船研究, 2023, 18(4):77-83

    Gong Hanlin, Yao Lanyu, Zhang Tiechun, et al. Simulation of lightning indirect effects and coupling mechanism of helicopter[J]. Chinese Journal of Ship Research, 2023, 18(4): 77-83
    [11] 张万里, 史云雷, 何勇, 等. 雷电电磁脉冲对典型机载GPS模块的损伤效应研究[J]. 强激光与粒子束, 2021, 33:033001

    Zhang Wanli, Shi Yunlei, He Yong, et al. Study on damage effects of lightning electromagnetic pulse on typical airborne GPS module[J]. High Power Laser and Particle Beams, 2021, 33: 033001
    [12] 姬壮壮. 雷电环境下机载信号传输电缆电磁干扰效应研究[D]. 西安: 西安电子科技大学, 2020: 31-65

    Ji Zhuangzhuang. Research on electromagnetic interference effect of airborne signal transmission cable in lightning environment[D]. Xi’an: Xidian University, 2020: 31-65
    [13] 赵玉龙, 刘光斌, 余志勇. 飞行器雷击附着点数值仿真研究[J]. 微波学报, 2012, 28(4):39-42

    Zhao Yulong, Liu Guangbin, Yu Zhiyong. Research on lightning attachment points simulation for aircraft[J]. Journal of Microwaves, 2012, 28(4): 39-42
    [14] SAE ARP 5412B-2013, Aircraft lightning environment and related test waveform[S].
    [15] SAE ARP 5416-2005, Aircraft lightning test methods[S].
    [16] GJB 2639-1996, 军用飞机雷电防护[S]

    GJB 2639-1996. Military aircraft lightning protection[S]
    [17] SAE ARP 5414A, Aircraft lightning zone[S].
    [18] 高成, 宋双, 郭永超, 等. 飞机雷击附着区域的划分仿真研究[J]. 电波科学学报, 2012, 27(6):1238-1243,1267

    Gao Cheng, Song Shuang, Guo Yongchao, et al. Study of numerical simulation of aircraft attachment points and lightning zoning[J]. Chinese Journal of Radio Science, 2012, 27(6): 1238-1243,1267
    [19] 卢翔, 单泽众, 赵淼. 民机雷击附着区域的划分仿真研究[J]. 微波学报, 2019, 35(2):87-91

    Lu Xiang, Shan Zezhong, Zhao Miao. Study of numerical simulation of civil aircrafts attachment points and lightning zoning[J]. Journal of Microwaves, 2019, 35(2): 87-91
    [20] Song Shuang, Gao Cheng, Guo Yongchao, et al. Study of numerical simulation of aircraft lightning zoning based on CST software[C]//Proceedings of the IEEE 2nd International Conference on Mechanic Automation and Control Engineering. 2011: 4428-4431.
    [21] 黄军玲. 飞机雷电间接效应仿真与研究[D]. 成都: 西南交通大学, 2016: 13-42

    Huang Junling. Simulation and research of lightning indirect effects on the aircraft[D]. Chengdu: Southwest Jiaotong University, 2016: 13-42
    [22] 丁冬. 基于多变量耦合的飞机线缆雷电间接效应研究[D]. 天津: 中国民航大学, 2022: 21-50

    Ding Dong. Research on lightning indirect effects of aircraft cable based on multi-factor coupling method[D]. Tianjin: Civil Aviation University of China, 2022: 21-50
  • 加载中
计量
  • 文章访问数:  16
  • HTML全文浏览量:  4
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-06
  • 修回日期:  2024-04-19
  • 录用日期:  2024-04-08
  • 网络出版日期:  2024-05-07

目录

    /

    返回文章
    返回