留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于激光等离子体的同轴结构脉冲强磁场设备

王志 王金灿 李天贻 熊超 唐桧波 况龙钰 胡广月

王志, 王金灿, 李天贻, 等. 用于激光等离子体的同轴结构脉冲强磁场设备[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250079
引用本文: 王志, 王金灿, 李天贻, 等. 用于激光等离子体的同轴结构脉冲强磁场设备[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250079
Wang Zhi, Wang Jincan, Li Tianyi, et al. Coaxial structure pulsed intense magnetic field device for laser plasma experiments[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250079
Citation: Wang Zhi, Wang Jincan, Li Tianyi, et al. Coaxial structure pulsed intense magnetic field device for laser plasma experiments[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250079

用于激光等离子体的同轴结构脉冲强磁场设备

doi: 10.11884/HPLPB202638.250079
基金项目: 国家自然科学基金项目(12175230, 11775223, 12205298);中国科学院战略先导专项项目(XDB16);统筹推进世界一流大学和一流学科建设专项资金资助项目(YD2140002006)
详细信息

Coaxial structure pulsed intense magnetic field device for laser plasma experiments

  • 摘要: 研制了一套同轴结构的脉冲强磁场设备用于和高功率激光装置相配合开展磁化激光等离子体实验。除磁场线圈外,整个设备全部采用同轴结构以降低电感和抑制电磁辐射,同时在整个设备外加屏蔽层来抑制电磁辐射;传输线部分使用多根长度约3 m的软同轴电缆并联的方式连接电容器和靶室上的刚性传输线。在40 kV脉冲充电电压时,使用直径12 mm的三匝磁场线圈作为负载,产生了峰值电流105 kA、上升时间1.2 μs、平顶宽度1.4 μs的放电脉冲,在线圈中心产生了22 T的强磁场。与课题组之前的脉冲强磁场设备相比,此设备除了可以产生更大的电流和更强的磁场外,自由空间电磁辐射和真空靶室上的电位抖动明显降低。软同轴电缆并联的传输线设计可以适应各种靶场环境、增加了使用灵活性。
  • 图  1  旧脉冲强磁场设备的结构图和实物图

    Figure  1.  Structure diagram and photo of the old pulsed high magnetic field device

    图  2  脉冲强磁场设备设计图

    Figure  2.  Design drawing of pulsed high intense magnetic field device

    图  3  电容器和气体开关结构图

    Figure  3.  Structure diagrams of the capacitor and gas switch

    图  4  电容器和气体开关部分实物图

    Figure  4.  Photograph of capacitors and gas switches

    图  5  转接结构和磁场线圈结构图。

    Figure  5.  Structure diagrams of the adapter and magnetic field coil

    图  6  脉冲磁场设备实物图。

    Figure  6.  Photograph of pulsed magnetic field device

    图  7  使用内径15 mm的单匝线圈在40 kV充电电压时测量的电流波形

    Figure  7.  The 40 kV discharge test current waveform using a single turn coil with an inner diameter of 15 mm

    图  8  磁场测量和模拟结果

    Figure  8.  Magnetic field test and simulation results

    (a) 20 kV discharge magnetic field waveform (b) 20 kV discharge inner diameter 9 mm three-turn Helmholtz coil two-dimensional axisymmetric distribution of magnetic field at peak time (c) 40 kV discharge magnetic field waveform (d) 40 kV discharge inner diameter 12 mm three-turn coil two-dimensional axisymmetric distribution of magnetic field at peak time

    图  9  t=0 ns时线圈附近感生电场空间分布

    Figure  9.  Spatial distribution of induced electric field around the coil when t=0 ns

    图  10  模拟的40 kV充电电压时、三匝铜线圈的范式等效应力和变形。每个子图中的三个黑色圆圈代表铜线圈的初始位置

    Figure  10.  Simulated Von Mises stress and deformation of the triple-turn Cu coil after the start of discharge. The three black circles in each subgraph represent the original position of the wires

    图  11  40 kV充电电压时,模拟的内径12 mm三匝磁场线圈的温度变化。

    Figure  11.  Simulation results of 40kV discharge using a three-turn coil with an inner diameter of 12 mm

    图  12  脉冲强磁场设备产生的电磁干扰测量实物图

    Figure  12.  Photograph of measuring electromagnetic interference

    图  13  新旧设备电磁干扰的测量结果对比

    Figure  13.  Comparison of electromagnetic interference

    表  1  新旧脉冲磁场设备的电气参数对比

    Table  1.   Comparison of electrical parameters between the old and new pulsed magnetic field device

    voltage/kV capacitance/μF resistance/Ω inductance/nH imax/kA rise time/μs
    new device 40 5 0.069 440 105 1.2
    old device 30 2.4 0.080 520 45 1.5
    下载: 导出CSV

    表  2  脉冲磁场设备的电感和电阻分布(采用15 mm单匝线圈)

    Table  2.   Inductance and resistance distribution of the pulsed magnetic field device using a 15 mm single-turn coil

    inductance/nH resistance/Ω
    capacitors 40 0.001
    switch 85 0.03
    transmission line 287 0.03
    coil 28 0.008
    下载: 导出CSV
  • [1] Thio Y C F, Hsu S C, Witherspoon F D, et al. Plasma-jet-driven magneto-inertial fusion[J]. Fusion Science and Technology, 2019, 75(7): 581-598. doi: 10.1080/15361055.2019.1598736
    [2] Lindemuth I R, Siemon R E. The fundamental parameter space of controlled thermonuclear fusion[J]. American Journal of Physics, 2009, 77(5): 407-416. doi: 10.1119/1.3096646
    [3] Slutz S A, Herrmann M C, Vesey R A, et al. Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field[J]. Physics of Plasmas, 2010, 17: 056303. doi: 10.1063/1.3333505
    [4] Gomez M R, Slutz S A, Sefkow A B, et al. Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion[J]. Physical Review Letters, 2014, 113: 155003. doi: 10.1103/PhysRevLett.113.155003
    [5] Tang Huibo, Hu Guangyue, Liang Yihan, et al. Confinement of laser plasma expansion with strong external magnetic field[J]. Plasma Physics and Controlled Fusion, 2018, 60: 055005. doi: 10.1088/1361-6587/aab2e6
    [6] Montgomery D S, Albright B J, Barnak D H, et al. Use of external magnetic fields in hohlraum plasmas to improve laser-coupling[J]. Physics of Plasmas, 2015, 22: 010703. doi: 10.1063/1.4906055
    [7] Albertazzi B, Ciardi A, Nakatsutsumi M, et al. Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field[J]. Science, 2014, 346(6207): 325-328. doi: 10.1126/science.1259694
    [8] Fiksel G, Fox W, Bhattacharjee A, et al. Magnetic reconnection between colliding magnetized laser-produced plasma plumes[J]. Physical Review Letters, 2014, 113: 105003. doi: 10.1103/PhysRevLett.113.105003
    [9] Schaeffer D B, Fox W, Haberberger D, et al. Generation and evolution of high-Mach-number laser-driven magnetized collisionless shocks in the laboratory[J]. Physical Review Letters, 2017, 119: 025001. doi: 10.1103/PhysRevLett.119.025001
    [10] Sano T, Inoue T, Nishihara K. Critical magnetic field strength for suppression of the Richtmyer-Meshkov instability in plasmas[J]. Physical Review Letters, 2013, 111: 205001. doi: 10.1103/PhysRevLett.111.205001
    [11] Matsuo K, Nagatomo H, Zhang Zhe, et al. Magnetohydrodynamics of laser-produced high-energy-density plasma in a strong external magnetic field[J]. Physical Review E, 2017, 95: 053204. doi: 10.1103/PhysRevE.95.053204
    [12] Froula D, Ross J, Pollock B, et al. Quenching of the nonlocal electron heat transport by large external magnetic fields in a laser-produced plasma measured with imaging Thomson scattering[J]. Physical Review Letters, 2007, 98: 135001. doi: 10.1103/PhysRevLett.98.135001
    [13] Ivanov V V, Maximov A V, Betti R, et al. Generation of disc-like plasma from laser-matter interaction in the presence of a strong external magnetic field[J]. Plasma Physics and Controlled Fusion, 2017, 59: 085008. doi: 10.1088/1361-6587/aa7358
    [14] Fiksel G, Agliata A, Barnak D, et al. Note: experimental platform for magnetized high-energy-density plasma studies at the omega laser facility[J]. Review of Scientific Instruments, 2015, 86: 016105. doi: 10.1063/1.4905625
    [15] Shapovalov R V, Brent G, Moshier R, et al. Design of 30-T pulsed magnetic field generator for magnetized high-energy-density plasma experiments[J]. Physical Review Accelerators and Beams, 2019, 22: 080401. doi: 10.1103/PhysRevAccelBeams.22.080401
    [16] Albertazzi B, Béard J, Ciardi A, et al. Production of large volume, strongly magnetized laser-produced plasmas by use of pulsed external magnetic fields[J]. Review of Scientific Instruments, 2013, 84: 043505. doi: 10.1063/1.4795551
    [17] Burris-Mog T, Harres K, Nürnberg F, et al. Laser accelerated protons captured and transported by a pulse power solenoid[J]. Physical Review Special Topics - Accelerators and Beams, 2011, 14: 121301. doi: 10.1103/PhysRevSTAB.14.121301
    [18] Rovang D C, Lamppa D C, Cuneo M E, et al. Pulsed-coil magnet systems for applying uniform 10-30 T fields to centimeter-scale targets on Sandia's Z facility[J]. Review of Scientific Instruments, 2014, 85: 124701. doi: 10.1063/1.4902566
    [19] Edamoto M, Morita T, Saito N, et al. Portable and noise-tolerant magnetic field generation system[J]. Review of Scientific Instruments, 2018, 89: 094706. doi: 10.1063/1.5049217
    [20] Hu Peng, Hu Guangyue, Wang Yulin, et al. Pulsed magnetic field device for laser plasma experiments at Shenguang-II laser facility[J]. Review of Scientific Instruments, 2020, 91: 014703. doi: 10.1063/1.5139613
    [21] Wang Yulin, Hu Guangyue, Hu Peng, et al. Compact pulsed intense magnetic field generator for Shenguang-II upgrade laser facility[J]. Journal of Instrumentation, 2019, 14: P09024. doi: 10.1088/1748-0221/14/09/P09024
    [22] Wang Yulin, Hu Guangyue, Hu Peng, et al. Portable pulsed magnetic field generator for magnetized laser plasma experiments in low vacuum environments[J]. Review of Scientific Instruments, 2019, 90: 075108. doi: 10.1063/1.5095541
    [23] Hu Peng, Zhao Jiayi, Wang Jincan, et al. Upgraded pulsed magnetic field generator for Shenguang-II laser facility toward 30 T[J]. Journal of Instrumentation, 2022, 17: P07036. doi: 10.1088/1748-0221/17/07/P07036
    [24] 王金灿, 张振弛, 王志, 等. 激光等离子体实验中脉冲强磁场设备产生的电磁干扰和屏蔽方法[J]. 强激光与粒子束, 2024, 36: 105001 doi: 10.11884/HPLPB202436.240136

    Wang Jincan, Zhang Zhenchi, Wang Zhi, et al. Generation and mitigation of electromagnetic pulses from pulsed intense magnetic field device in laser plasma experiments[J]. High Power Laser and Particle Beams, 2024, 36: 105001 doi: 10.11884/HPLPB202436.240136
    [25] 易涛, 景峰, 王新彬, 等. 神光Ⅲ装置电磁脉冲测量[J]. 安全与电磁兼容, 2017(6): 83-85

    Yi Tao, Jing Feng, Wang Xinbin, et al. Electromagnetic pulse measurement at Shen Guang Ⅲ laser facility[J]. Safety & EMC, 2017(6): 83-85
    [26] 易涛, 郑万国, 江少恩. 高功率激光装置电磁兼容设计[J]. 安全与电磁兼容, 2019(1): 89-92

    Yi Tao, Zheng Wanguo, Jiang Shao’en. EMC design of high power laser facility experiments[J]. Safety & EMC, 2019(1): 89-92
    [27] 杨正华, 刘慎业, 肖绍球, 等. 神光Ⅲ原型装置靶室电磁干扰测量与分析[J]. 核电子学与探测技术, 2015, 35(2): 210-214 doi: 10.3969/j.issn.0258-0934.2015.02.023

    Yang Zhenghua, Liu Shenye, Xiao Shaoqiu, et al. Research of electric field pulse of Shenguang Ⅲ prototype laser facility target chamber[J]. Nuclear Electronics & Detection Technology, 2015, 35(2): 210-214 doi: 10.3969/j.issn.0258-0934.2015.02.023
    [28] 杨士元. 电磁屏蔽理论与实践[M]. 北京: 国防工业出版社, 2006

    Yang Shiyuan. Electromagnetic shielding theory and practice[M]. Beijing: National Defense Industry Press, 2006
    [29] 路宏敏, 赵晓凡, 谭康伯, 等. 工程电磁兼容[M]. 3版. 西安: 西安电子科技大学出版社, 2019

    Lu Hongmin, Zhao Xiaofan, Tan Kangbo, et al. Engineering electromagnetic compatibility[M]. 3rd ed. Xi’an: Xidian University Press, 2019
    [30] 韩旻, 邹晓兵, 张贵新. 脉冲功率技术基础[M]. 北京: 清华大学出版社, 2010

    Han Min, Zou Xiaobing, Zhang Guixin. Pulse power technology basis[M]. Beijing: Tsinghua University Press, 2010
    [31] 布鲁姆. 脉冲功率系统的原理与应用[M]. 江伟华, 张弛, 译. 北京: 清华大学出版社, 2008

    Blum H. Pulsed power systems: principles and applications[M]. Jiang Weihua, Zhang Chi, trans. Beijing: Tsinghua University Press, 2008
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  13
  • HTML全文浏览量:  8
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-24
  • 修回日期:  2026-01-12
  • 录用日期:  2025-12-23
  • 网络出版日期:  2026-01-28

目录

    /

    返回文章
    返回