Coaxial structure pulsed intense magnetic field device for laser plasma experiments
-
摘要: 研制了一套同轴结构的脉冲强磁场设备用于和高功率激光装置相配合开展磁化激光等离子体实验。除磁场线圈外,整个设备全部采用同轴结构以降低电感和抑制电磁辐射,同时在整个设备外加屏蔽层来抑制电磁辐射;传输线部分使用多根长度约3 m的软同轴电缆并联的方式连接电容器和靶室上的刚性传输线。在40 kV脉冲充电电压时,使用直径12 mm的三匝磁场线圈作为负载,产生了峰值电流105 kA、上升时间1.2 μs、平顶宽度1.4 μs的放电脉冲,在线圈中心产生了22 T的强磁场。与课题组之前的脉冲强磁场设备相比,此设备除了可以产生更大的电流和更强的磁场外,自由空间电磁辐射和真空靶室上的电位抖动明显降低。软同轴电缆并联的传输线设计可以适应各种靶场环境、增加了使用灵活性。Abstract:
Background In recent years, magnetized laser-plasma research has gained significant importance in multiple frontier fields such as magneto-inertial confinement fusion, magnetic reconnection, collisionless shocks, and magnetohydrodynamic instabilities. Pulsed magnetic field devices have become the mainstream experimental approach, as they can generate magnetic field parameters that meet experimental requirements in terms of strength, spatial scale, and duration. Such devices have been integrated into multiple large-scale laser facilities worldwide, and our research group has also successfully developed several pulsed magnetic field systems adaptable to laser setups of different scales. However, existing devices still face two major challenges: first, strong electromagnetic interference affects data acquisition and equipment safety; second, advances in physical experiments demand higher magnetic field strengths.Purpose This study presents a novel coaxial-structure pulsed magnetic field device, designed to optimize the circuit configuration for suppressing electromagnetic interference (EMI) and enhancing magnetic field strength, thereby providing a more reliable high-field environment for magnetized laser-plasma experiments.Methods The experiment employs an all-coaxial architecture to enhance electromagnetic compatibility. Multiple soft coaxial cables are connected in parallel to link a 5 μF high-voltage coaxial capacitor with a rigid coaxial transmission line inside the vacuum target chamber, thereby minimizing system inductance.Results At 40 kV charging voltage, a discharge current with 105 kA peak intensity, a rise time of 1.2 μs, and a flat top width of 1.4 μs is produced, which generates a intense magnetic field of 22 T in the center of a three-turn magnetic field coil with 12 mm diameter. Compared with our previous pulsed intense magnetic field device, the present device can generate larger current and stronger magnetic field, while the free-space EM noise and potential jitter (voltage fluctuation) of the vacuum chamber are significantly reduced.Conclusions Experimental results demonstrate that the key performance of this device has reached the mainstream advanced level of international counterparts, such as relevant systems from the U.S. LLNL, France's LULI, and Germany’s HZDR. This device combines high magnetic field strength, microsecond-level flat-top stability, and low electromagnetic interference, providing precisely controllable strong magnetic field experimental conditions—previously difficult to achieve—for frontier research areas such as magneto-inertial confinement fusion, laboratory astrophysics, magnetohydrodynamic instabilities, and pulsed laser deposition coating. -
图 8 磁场测量和模拟结果
Figure 8. Magnetic field test and simulation results
(a) 20 kV discharge magnetic field waveform (b) 20 kV discharge inner diameter 9 mm three-turn Helmholtz coil two-dimensional axisymmetric distribution of magnetic field at peak time (c) 40 kV discharge magnetic field waveform (d) 40 kV discharge inner diameter 12 mm three-turn coil two-dimensional axisymmetric distribution of magnetic field at peak time
表 1 新旧脉冲磁场设备的电气参数对比
Table 1. Comparison of electrical parameters between the old and new pulsed magnetic field device
voltage/kV capacitance/μF resistance/Ω inductance/nH imax/kA rise time/μs new device 40 5 0.069 440 105 1.2 old device 30 2.4 0.080 520 45 1.5 表 2 脉冲磁场设备的电感和电阻分布(采用15 mm单匝线圈)
Table 2. Inductance and resistance distribution of the pulsed magnetic field device using a 15 mm single-turn coil
inductance/nH resistance/Ω capacitors 40 0.001 switch 85 0.03 transmission line 287 0.03 coil 28 0.008 -
[1] Thio Y C F, Hsu S C, Witherspoon F D, et al. Plasma-jet-driven magneto-inertial fusion[J]. Fusion Science and Technology, 2019, 75(7): 581-598. doi: 10.1080/15361055.2019.1598736 [2] Lindemuth I R, Siemon R E. The fundamental parameter space of controlled thermonuclear fusion[J]. American Journal of Physics, 2009, 77(5): 407-416. doi: 10.1119/1.3096646 [3] Slutz S A, Herrmann M C, Vesey R A, et al. Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field[J]. Physics of Plasmas, 2010, 17: 056303. doi: 10.1063/1.3333505 [4] Gomez M R, Slutz S A, Sefkow A B, et al. Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion[J]. Physical Review Letters, 2014, 113: 155003. doi: 10.1103/PhysRevLett.113.155003 [5] Tang Huibo, Hu Guangyue, Liang Yihan, et al. Confinement of laser plasma expansion with strong external magnetic field[J]. Plasma Physics and Controlled Fusion, 2018, 60: 055005. doi: 10.1088/1361-6587/aab2e6 [6] Montgomery D S, Albright B J, Barnak D H, et al. Use of external magnetic fields in hohlraum plasmas to improve laser-coupling[J]. Physics of Plasmas, 2015, 22: 010703. doi: 10.1063/1.4906055 [7] Albertazzi B, Ciardi A, Nakatsutsumi M, et al. Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field[J]. Science, 2014, 346(6207): 325-328. doi: 10.1126/science.1259694 [8] Fiksel G, Fox W, Bhattacharjee A, et al. Magnetic reconnection between colliding magnetized laser-produced plasma plumes[J]. Physical Review Letters, 2014, 113: 105003. doi: 10.1103/PhysRevLett.113.105003 [9] Schaeffer D B, Fox W, Haberberger D, et al. Generation and evolution of high-Mach-number laser-driven magnetized collisionless shocks in the laboratory[J]. Physical Review Letters, 2017, 119: 025001. doi: 10.1103/PhysRevLett.119.025001 [10] Sano T, Inoue T, Nishihara K. Critical magnetic field strength for suppression of the Richtmyer-Meshkov instability in plasmas[J]. Physical Review Letters, 2013, 111: 205001. doi: 10.1103/PhysRevLett.111.205001 [11] Matsuo K, Nagatomo H, Zhang Zhe, et al. Magnetohydrodynamics of laser-produced high-energy-density plasma in a strong external magnetic field[J]. Physical Review E, 2017, 95: 053204. doi: 10.1103/PhysRevE.95.053204 [12] Froula D, Ross J, Pollock B, et al. Quenching of the nonlocal electron heat transport by large external magnetic fields in a laser-produced plasma measured with imaging Thomson scattering[J]. Physical Review Letters, 2007, 98: 135001. doi: 10.1103/PhysRevLett.98.135001 [13] Ivanov V V, Maximov A V, Betti R, et al. Generation of disc-like plasma from laser-matter interaction in the presence of a strong external magnetic field[J]. Plasma Physics and Controlled Fusion, 2017, 59: 085008. doi: 10.1088/1361-6587/aa7358 [14] Fiksel G, Agliata A, Barnak D, et al. Note: experimental platform for magnetized high-energy-density plasma studies at the omega laser facility[J]. Review of Scientific Instruments, 2015, 86: 016105. doi: 10.1063/1.4905625 [15] Shapovalov R V, Brent G, Moshier R, et al. Design of 30-T pulsed magnetic field generator for magnetized high-energy-density plasma experiments[J]. Physical Review Accelerators and Beams, 2019, 22: 080401. doi: 10.1103/PhysRevAccelBeams.22.080401 [16] Albertazzi B, Béard J, Ciardi A, et al. Production of large volume, strongly magnetized laser-produced plasmas by use of pulsed external magnetic fields[J]. Review of Scientific Instruments, 2013, 84: 043505. doi: 10.1063/1.4795551 [17] Burris-Mog T, Harres K, Nürnberg F, et al. Laser accelerated protons captured and transported by a pulse power solenoid[J]. Physical Review Special Topics - Accelerators and Beams, 2011, 14: 121301. doi: 10.1103/PhysRevSTAB.14.121301 [18] Rovang D C, Lamppa D C, Cuneo M E, et al. Pulsed-coil magnet systems for applying uniform 10-30 T fields to centimeter-scale targets on Sandia's Z facility[J]. Review of Scientific Instruments, 2014, 85: 124701. doi: 10.1063/1.4902566 [19] Edamoto M, Morita T, Saito N, et al. Portable and noise-tolerant magnetic field generation system[J]. Review of Scientific Instruments, 2018, 89: 094706. doi: 10.1063/1.5049217 [20] Hu Peng, Hu Guangyue, Wang Yulin, et al. Pulsed magnetic field device for laser plasma experiments at Shenguang-II laser facility[J]. Review of Scientific Instruments, 2020, 91: 014703. doi: 10.1063/1.5139613 [21] Wang Yulin, Hu Guangyue, Hu Peng, et al. Compact pulsed intense magnetic field generator for Shenguang-II upgrade laser facility[J]. Journal of Instrumentation, 2019, 14: P09024. doi: 10.1088/1748-0221/14/09/P09024 [22] Wang Yulin, Hu Guangyue, Hu Peng, et al. Portable pulsed magnetic field generator for magnetized laser plasma experiments in low vacuum environments[J]. Review of Scientific Instruments, 2019, 90: 075108. doi: 10.1063/1.5095541 [23] Hu Peng, Zhao Jiayi, Wang Jincan, et al. Upgraded pulsed magnetic field generator for Shenguang-II laser facility toward 30 T[J]. Journal of Instrumentation, 2022, 17: P07036. doi: 10.1088/1748-0221/17/07/P07036 [24] 王金灿, 张振弛, 王志, 等. 激光等离子体实验中脉冲强磁场设备产生的电磁干扰和屏蔽方法[J]. 强激光与粒子束, 2024, 36: 105001 doi: 10.11884/HPLPB202436.240136Wang Jincan, Zhang Zhenchi, Wang Zhi, et al. Generation and mitigation of electromagnetic pulses from pulsed intense magnetic field device in laser plasma experiments[J]. High Power Laser and Particle Beams, 2024, 36: 105001 doi: 10.11884/HPLPB202436.240136 [25] 易涛, 景峰, 王新彬, 等. 神光Ⅲ装置电磁脉冲测量[J]. 安全与电磁兼容, 2017(6): 83-85Yi Tao, Jing Feng, Wang Xinbin, et al. Electromagnetic pulse measurement at Shen Guang Ⅲ laser facility[J]. Safety & EMC, 2017(6): 83-85 [26] 易涛, 郑万国, 江少恩. 高功率激光装置电磁兼容设计[J]. 安全与电磁兼容, 2019(1): 89-92Yi Tao, Zheng Wanguo, Jiang Shao’en. EMC design of high power laser facility experiments[J]. Safety & EMC, 2019(1): 89-92 [27] 杨正华, 刘慎业, 肖绍球, 等. 神光Ⅲ原型装置靶室电磁干扰测量与分析[J]. 核电子学与探测技术, 2015, 35(2): 210-214 doi: 10.3969/j.issn.0258-0934.2015.02.023Yang Zhenghua, Liu Shenye, Xiao Shaoqiu, et al. Research of electric field pulse of Shenguang Ⅲ prototype laser facility target chamber[J]. Nuclear Electronics & Detection Technology, 2015, 35(2): 210-214 doi: 10.3969/j.issn.0258-0934.2015.02.023 [28] 杨士元. 电磁屏蔽理论与实践[M]. 北京: 国防工业出版社, 2006Yang Shiyuan. Electromagnetic shielding theory and practice[M]. Beijing: National Defense Industry Press, 2006 [29] 路宏敏, 赵晓凡, 谭康伯, 等. 工程电磁兼容[M]. 3版. 西安: 西安电子科技大学出版社, 2019Lu Hongmin, Zhao Xiaofan, Tan Kangbo, et al. Engineering electromagnetic compatibility[M]. 3rd ed. Xi’an: Xidian University Press, 2019 [30] 韩旻, 邹晓兵, 张贵新. 脉冲功率技术基础[M]. 北京: 清华大学出版社, 2010Han Min, Zou Xiaobing, Zhang Guixin. Pulse power technology basis[M]. Beijing: Tsinghua University Press, 2010 [31] 布鲁姆. 脉冲功率系统的原理与应用[M]. 江伟华, 张弛, 译. 北京: 清华大学出版社, 2008Blum H. Pulsed power systems: principles and applications[M]. Jiang Weihua, Zhang Chi, trans. Beijing: Tsinghua University Press, 2008 -
下载: