An all-metal beam scanning lens antenna for high-power microwave applications
-
摘要: 提出了一种基于Risley棱镜原理的新型圆极化全金属超透镜波束扫描天线,旨在解决高功率微波天线领域的大角度波束扫描和高功率容量难题。通过在六边形透镜单元中引入圆形缝隙及超材料结构,实现了该单元在中心频点处超过99%的圆极化正交转化效率(表征入射左旋/右旋圆极化波向右旋/左旋圆极化的转化效率)及0~360°连续相位调控。单元组阵后,两层透镜与径向线枝节缝隙馈源共同构成了波束扫描天线。其中第一层透镜将馈源辐射的圆极化空心波束转换为实心波束,并实现25.66°波束偏转,第二层透镜将该偏转波束进行二次偏转,独立转动两层透镜可以实现±60°锥角内的二维波束扫描。仿真设计了工作在14.25 GHz、轴向长度为5.6λ的波束扫描透镜天线,扫描过程中增益变化范围为34.7~37.9 dB,反射系数始终低于−25 dB,最大口径效率超过79%。单个透镜单元功率容量为0.63 MW,天线整体功率容量超过1 GW,具有应用在高功率微波领域的潜力。Abstract:
Background With the advancement of high-power microwave (HPM) technology, there is a growing demand for HPM antennas with beam scanning capabilities.Purpose This paper focuses on the beam-scanning technology in HPM field and proposes a novel circularly-polarized all-metal beam-scanning lens antenna based on the Risley-prism principle, aiming to address the challenges of wide-angle beam scanning and high power handling capacity (PHC).Methods By introducing circular slots and metamaterial structures into hexagonal units, a circular polarization orthogonal conversion efficiency(the conversion efficiency of incident left-hand/right-hand circularly polarized (LHCP/RHCP) waves to their orthogonal RHCP/LHCP waves) of over 99% at the central frequency and a continuous phase tuning range of 0° to 360° are achieved. After arraying, the two-layer lens, together with the radial line slot array (RLSA) antenna, constitutes the beam scanning antenna system. Specifically, the first lens converts the circularly polarized hollow beam radiated by the feed antenna into a solid beam while achieving a 25.66° beam deflection synchronously. The second lens further deflects the beam, and two-dimensional beam scanning within a conical angle of ±60° can be realized by independently rotating the two layers of lenses.Results A beam scanning lens antenna operating at 14.25 GHz with an axial length of 5.6λ is designed and simulated. During the scanning process, the gain varies within the range of 34.7–37.9 dB, the reflection coefficient remains consistently below −25 dB, and the maximum aperture efficiency exceeds 79%, with the PHC of the beam scanning antenna exceeds 1 GW.Conclusions The antenna proposed in this paper exhibits excellent beam scanning performance and high PHC, demonstrating great potential for applications in the HPM field. -
表 1 两种单元结构参数
Table 1. Structure parameters of two kinds of units
parameters f/GHz a/mm r/mm h/mm l1/mm w1/mm r1/mm l2/mm w2/mm r2/mm cham/mm unit#1 14.25 6.26 4.86 11.58 4.54 4.35 1.60 2.33 1.83 0.60 0.30 unit#2 14.25 6.64 5.22 11.21 4.87 4.84 2.00 2.28 2.02 0.30 0.30 表 2 波束扫描透镜天线性能
Table 2. Performance of beam scanning lens antenna
case θ/(°) gain/dB reflection coefficient/dB aperture efficiency/% axial ratio/dB sidelobe/dB 1 0 37.9 −31.3 79.5 2.216 −16.9 2 19.3 37.5 −36.9 72.6 0.309 −16.8 3 37.8 36.6 −38.9 58.9 0.583 −16.9 4 53.1 35.5 −35.6 45.8 4.456 −16.3 5 60 34.7 −27.8 38.1 8.411 −12.1 表 3 波束扫描透镜天线性能对比
Table 3. Comparison of beam scanning lens antennas
-
[1] Ding Yafei, Zou Ziwen, Luo Yong, et al. A lens antenna with reconfigurable beams for mmWave wind profile radar[J]. Sensors, 2022, 22: 3148. doi: 10.3390/s22093148 [2] Datta S, Upda L. Microwave imaging sensor system using metamaterial lens for subwavelength resolution[J]. NDT & E International, 2023, 139: 102908. doi: 10.1016/j.ndteint.2023.102908 [3] Moon H J, Jeon H B, Chae C B. RF lens antenna array-based one-shot coarse pointing for hybrid RF/FSO communications[J]. IEEE Wireless Communications Letters, 2022, 11(2): 240-244. doi: 10.1109/LWC.2021.3124809 [4] Wan Yinglu, Liao Shaowei, Li Liangying, et al. Phased array antenna with top-truncated dome lens for wide-angle scanning[J]. IEEE Transactions on Antennas and Propagation, 2024, 72(6): 5066-5077. doi: 10.1109/TAP.2024.3399920 [5] Panzner B, Joestingmeier A, Omar A. Ka-Band dielectric lens antenna for resolution enhancement of a GPR[C]//Proceedings of 2008 8th International Symposium on Antennas, Propagation and EM Theory. 2008: 31-34. [6] Banik B K, Vukusic J, Merkel H, et al. A novel catadioptric dielectric lens for microwave and terahertz applications[J]. Microwave and Optical Technology Letters, 2008, 50(2): 416-419. doi: 10.1002/mop.23100 [7] Ravishankar S, Biswagar P. Analysis of dielectric lens - adaptive array antennas for shaped beam applications[C]//Proceedings of 2006 IEEE Sarnoff Symposium. 2006: 1-4. [8] 吴丹, 何应然, 王政, 等. 一种宽带高增益太赫兹透镜天线及其组阵设计[J]. 无线电工程, 2023, 53(3): 727-734 doi: 10.3969/j.issn.1003-3106.2023.03.029Wu Dan, He Yingran, Wang Zheng, et al. Design of a broadband high-gain terahertz lens antenna and antenna array[J]. Radio Engineering, 2023, 53(3): 727-734 doi: 10.3969/j.issn.1003-3106.2023.03.029 [9] Yang Yaguang. Analytic solution of free space optical beam steering using Risley prisms[J]. Journal of Lightwave Technology, 2008, 26(21): 3576-3583. doi: 10.1109/JLT.2008.917323 [10] Lu Yafei, Zhou Yuan, Hei Mo, et al. Theoretical and experimental determination of steering mechanism for Risley prism systems[J]. Applied Optics, 2013, 52(7): 1389-1398. doi: 10.1364/AO.52.001389 [11] Pozar D M. Flat lens antenna concept using aperture coupled microstrip patches[J]. Electronics Letters, 1996, 32(23): 2109-2111. doi: 10.1049/el:19961451 [12] Rahmati B, Hassani H R. Low-profile slot transmitarray antenna[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(1): 174-181. doi: 10.1109/TAP.2014.2368576 [13] Abdelrahman A H, Elsherbeni A Z, Yang Fan. High-gain and broadband transmitarray antenna using triple-layer spiral dipole elements[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 1288-1291. doi: 10.1109/LAWP.2014.2334663 [14] Gagnon N, Petosa A. Using rotatable planar phase shifting surfaces to steer a high-gain beam[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(6): 3086-3092. doi: 10.1109/TAP.2013.2253298 [15] Afzal M U, Esselle K P. Steering the beam of medium-to-high gain antennas using near-field phase transformation[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(4): 1680-1690. doi: 10.1109/TAP.2017.2670612 [16] Afzal M U, Esselle K P. Application of near-field phase transformation to steer the beam of high-gain antennas in two dimensions[C]//Proceedings of 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. 2017: 1947-1948. [17] Phillion R H, Okoniewski M. Lenses for circular polarization using planar arrays of rotated passive elements[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(4): 1217-1227. doi: 10.1109/TAP.2011.2109694 [18] Benford J. History and future of high power microwaves[J]. IEEE Transactions on Plasma Science, 2024, 52(4): 1137-1144. doi: 10.1109/TPS.2024.3391732 [19] Xu Weili, Ling Junpu, Song Lili, et al. Enhancing long-pulse operation of Ku-band TTO microwave source for GW-level applications[J]. IEEE Transactions on Electron Devices, 2024, 71(5): 3183-3188. doi: 10.1109/TED.2024.3373372 [20] 孙云飞, 张强, 刘璇, 等. 高功率一维波束扫描透镜天线: CN117578093A[P]. 2024-02-20Sun Yunfei, Zhang Qiang, Liu Xuan, et al. High-power one-dimensional beam scanning lens antenna: CN117578093A[P]. 2024-02-20 [21] Zhao Xuelong, Yuan Chengwei, Liu Lie, et al. All-metal transmit-array for circular polarization design using rotated cross-slot elements for high-power microwave applications[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(6): 3253-3256. doi: 10.1109/tap.2017.2691460 [22] Zhao Xuelong, Yuan Chengwei, Liu Lie, et al. All-metal beam steering lens antenna for high power microwave applications[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(12): 7340-7344. [23] 赵雪龙. 高功率微波过模转换及波束扫描透镜天线研究[D]. 长沙: 国防科技大学, 2017Zhao Xuelong. Investigation on mode conversion in over-moded state and beam steering lens antenna for high power microwave applications[D]. Changsha: National University of Defense Technology, 2017 [24] Sun Yunfei, Dang Fangchao, Yuan Chengwei, et al. A beam-steerable lens antenna for Ku-band high-power microwave applications[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(11): 7580-7583. doi: 10.1109/TAP.2020.2979282 [25] Zhao Xuhao, Liu Mengqi, Sun Yunfei, et al. Design and experimental demonstration of a beam scanning lens antenna[J]. Review of Scientific Instruments, 2022, 93: 084703. doi: 10.1063/5.0091152 [26] Bankman I. Frequency selective surfaces: theory and design [Book Review][J]. IEEE Signal Processing Magazine, 2001, 18: 94. doi: 10.1109/msp.2001.911199 [27] 彭升人. 高功率微波TM0n混合模式诊断与转换发射技术研究[D]. 长沙: 国防科学技术大学, 2016Peng Shengren. Investigation on diagnosis and conversion transmission techniques of TM0n Mixed modes for high-power microwave applications[D]. Changsha: National University of Defense Technology, 2016 -
下载: