留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种应用于高功率微波的全金属波束扫描透镜天线

马照坤 孙云飞 张强 贺军涛 袁成卫 曹甄强

马照坤, 孙云飞, 张强, 等. 一种应用于高功率微波的全金属波束扫描透镜天线[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250237
引用本文: 马照坤, 孙云飞, 张强, 等. 一种应用于高功率微波的全金属波束扫描透镜天线[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250237
Ma Zhaokun, Sun Yunfei, Zhang Qiang, et al. An all-metal beam scanning lens antenna for high-power microwave applications[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250237
Citation: Ma Zhaokun, Sun Yunfei, Zhang Qiang, et al. An all-metal beam scanning lens antenna for high-power microwave applications[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250237

一种应用于高功率微波的全金属波束扫描透镜天线

doi: 10.11884/HPLPB202638.250237
详细信息
    作者简介:

    马照坤,mazhaokun7@163.com

    通讯作者:

    孙云飞,sunyunfei_gfkd@163.com

    贺军涛,hjt0731@163.com

  • 中图分类号: TN

An all-metal beam scanning lens antenna for high-power microwave applications

  • 摘要: 提出了一种基于Risley棱镜原理的新型圆极化全金属超透镜波束扫描天线,旨在解决高功率微波天线领域的大角度波束扫描和高功率容量难题。通过在六边形透镜单元中引入圆形缝隙及超材料结构,实现了该单元在中心频点处超过99%的圆极化正交转化效率(表征入射左旋/右旋圆极化波向右旋/左旋圆极化的转化效率)及0~360°连续相位调控。单元组阵后,两层透镜与径向线枝节缝隙馈源共同构成了波束扫描天线。其中第一层透镜将馈源辐射的圆极化空心波束转换为实心波束,并实现25.66°波束偏转,第二层透镜将该偏转波束进行二次偏转,独立转动两层透镜可以实现±60°锥角内的二维波束扫描。仿真设计了工作在14.25 GHz、轴向长度为5.6λ的波束扫描透镜天线,扫描过程中增益变化范围为34.7~37.9 dB,反射系数始终低于−25 dB,最大口径效率超过79%。单个透镜单元功率容量为0.63 MW,天线整体功率容量超过1 GW,具有应用在高功率微波领域的潜力。
  • 图  1  天线波束扫描示意图

    Figure  1.  Schematic diagram of antenna beam scanning

    图  2  天线切面及单元结构示意图

    Figure  2.  Schematic diagram of antenna section and unit structure

    图  3  全金属透镜结构及局部放大

    Figure  3.  All metal lens structure and partial enlarged view

    图  4  单元结构及参数标注

    Figure  4.  Unit structure and parameter tagging

    图  5  扫描角度变化

    Figure  5.  Change in scanning angle

    图  6  扫描角度与单元边长的限制关系

    Figure  6.  Limiting relationship between scanning angle and unit side length

    图  7  单元#1的仿真结果

    Figure  7.  Simulation results of unit # 1

    图  8  单元#2的仿真结果

    Figure  8.  Simulation results of unit # 2

    图  9  单元阵列仿真的电场强度

    Figure  9.  Electric field in unit array simulation

    图  10  馈源天线仿真结果

    Figure  10.  Simulation results of feed antenna

    图  11  馈源天线+一层透镜结构模型与远场性能

    Figure  11.  Structure model and far-field pattern of feed antenna

    图  12  馈源天线+两层透镜三维方向图

    Figure  12.  3D far-field radiation pattern of feed antenna with two lens

    图  13  馈源天线+两层透镜仿真结果

    Figure  13.  Simulation results of feed antenna with two lens

    图  14  添加天线罩的波束扫描天线

    Figure  14.  Beam scanning antenna with radome

    图  15  波束扫描透镜天线电场

    Figure  15.  Electric field of beam scanning lens antenna

    表  1  两种单元结构参数

    Table  1.   Structure parameters of two kinds of units

    parametersf/GHza/mmr/mmh/mml1/mmw1/mmr1/mml2/mmw2/mmr2/mmcham/mm
    unit#114.256.264.8611.584.544.351.602.331.830.600.30
    unit#214.256.645.2211.214.874.842.002.282.020.300.30
    下载: 导出CSV

    表  2  波束扫描透镜天线性能

    Table  2.   Performance of beam scanning lens antenna

    case θ/(°) gain/dB reflection coefficient/dB aperture efficiency/% axial ratio/dB sidelobe/dB
    1 0 37.9 −31.3 79.5 2.216 −16.9
    2 19.3 37.5 −36.9 72.6 0.309 −16.8
    3 37.8 36.6 −38.9 58.9 0.583 −16.9
    4 53.1 35.5 −35.6 45.8 4.456 −16.3
    5 60 34.7 −27.8 38.1 8.411 −12.1
    下载: 导出CSV

    表  3  波束扫描透镜天线性能对比

    Table  3.   Comparison of beam scanning lens antennas

    reference frequency/
    GHz
    scanning
    range/(°)
    gain loss at
    maximum angle/dB
    aperture
    efficiency/%
    axial
    length
    PHC/
    (GW·m−2)
    [22] 9.375 ±30 / 53.0 15λ 4.0
    [24] 14.25 ±45 1.7 80.5 7.5λ 3.5
    [25] 14.25 ±60 3.0 75.9 7.5λ 5.0
    this paper 14.25 ±60 3.2 79.5 5.6λ 5.4
    下载: 导出CSV
  • [1] Ding Yafei, Zou Ziwen, Luo Yong, et al. A lens antenna with reconfigurable beams for mmWave wind profile radar[J]. Sensors, 2022, 22: 3148. doi: 10.3390/s22093148
    [2] Datta S, Upda L. Microwave imaging sensor system using metamaterial lens for subwavelength resolution[J]. NDT & E International, 2023, 139: 102908. doi: 10.1016/j.ndteint.2023.102908
    [3] Moon H J, Jeon H B, Chae C B. RF lens antenna array-based one-shot coarse pointing for hybrid RF/FSO communications[J]. IEEE Wireless Communications Letters, 2022, 11(2): 240-244. doi: 10.1109/LWC.2021.3124809
    [4] Wan Yinglu, Liao Shaowei, Li Liangying, et al. Phased array antenna with top-truncated dome lens for wide-angle scanning[J]. IEEE Transactions on Antennas and Propagation, 2024, 72(6): 5066-5077. doi: 10.1109/TAP.2024.3399920
    [5] Panzner B, Joestingmeier A, Omar A. Ka-Band dielectric lens antenna for resolution enhancement of a GPR[C]//Proceedings of 2008 8th International Symposium on Antennas, Propagation and EM Theory. 2008: 31-34.
    [6] Banik B K, Vukusic J, Merkel H, et al. A novel catadioptric dielectric lens for microwave and terahertz applications[J]. Microwave and Optical Technology Letters, 2008, 50(2): 416-419. doi: 10.1002/mop.23100
    [7] Ravishankar S, Biswagar P. Analysis of dielectric lens - adaptive array antennas for shaped beam applications[C]//Proceedings of 2006 IEEE Sarnoff Symposium. 2006: 1-4.
    [8] 吴丹, 何应然, 王政, 等. 一种宽带高增益太赫兹透镜天线及其组阵设计[J]. 无线电工程, 2023, 53(3): 727-734 doi: 10.3969/j.issn.1003-3106.2023.03.029

    Wu Dan, He Yingran, Wang Zheng, et al. Design of a broadband high-gain terahertz lens antenna and antenna array[J]. Radio Engineering, 2023, 53(3): 727-734 doi: 10.3969/j.issn.1003-3106.2023.03.029
    [9] Yang Yaguang. Analytic solution of free space optical beam steering using Risley prisms[J]. Journal of Lightwave Technology, 2008, 26(21): 3576-3583. doi: 10.1109/JLT.2008.917323
    [10] Lu Yafei, Zhou Yuan, Hei Mo, et al. Theoretical and experimental determination of steering mechanism for Risley prism systems[J]. Applied Optics, 2013, 52(7): 1389-1398. doi: 10.1364/AO.52.001389
    [11] Pozar D M. Flat lens antenna concept using aperture coupled microstrip patches[J]. Electronics Letters, 1996, 32(23): 2109-2111. doi: 10.1049/el:19961451
    [12] Rahmati B, Hassani H R. Low-profile slot transmitarray antenna[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(1): 174-181. doi: 10.1109/TAP.2014.2368576
    [13] Abdelrahman A H, Elsherbeni A Z, Yang Fan. High-gain and broadband transmitarray antenna using triple-layer spiral dipole elements[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 1288-1291. doi: 10.1109/LAWP.2014.2334663
    [14] Gagnon N, Petosa A. Using rotatable planar phase shifting surfaces to steer a high-gain beam[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(6): 3086-3092. doi: 10.1109/TAP.2013.2253298
    [15] Afzal M U, Esselle K P. Steering the beam of medium-to-high gain antennas using near-field phase transformation[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(4): 1680-1690. doi: 10.1109/TAP.2017.2670612
    [16] Afzal M U, Esselle K P. Application of near-field phase transformation to steer the beam of high-gain antennas in two dimensions[C]//Proceedings of 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. 2017: 1947-1948.
    [17] Phillion R H, Okoniewski M. Lenses for circular polarization using planar arrays of rotated passive elements[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(4): 1217-1227. doi: 10.1109/TAP.2011.2109694
    [18] Benford J. History and future of high power microwaves[J]. IEEE Transactions on Plasma Science, 2024, 52(4): 1137-1144. doi: 10.1109/TPS.2024.3391732
    [19] Xu Weili, Ling Junpu, Song Lili, et al. Enhancing long-pulse operation of Ku-band TTO microwave source for GW-level applications[J]. IEEE Transactions on Electron Devices, 2024, 71(5): 3183-3188. doi: 10.1109/TED.2024.3373372
    [20] 孙云飞, 张强, 刘璇, 等. 高功率一维波束扫描透镜天线: CN117578093A[P]. 2024-02-20

    Sun Yunfei, Zhang Qiang, Liu Xuan, et al. High-power one-dimensional beam scanning lens antenna: CN117578093A[P]. 2024-02-20
    [21] Zhao Xuelong, Yuan Chengwei, Liu Lie, et al. All-metal transmit-array for circular polarization design using rotated cross-slot elements for high-power microwave applications[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(6): 3253-3256. doi: 10.1109/tap.2017.2691460
    [22] Zhao Xuelong, Yuan Chengwei, Liu Lie, et al. All-metal beam steering lens antenna for high power microwave applications[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(12): 7340-7344.
    [23] 赵雪龙. 高功率微波过模转换及波束扫描透镜天线研究[D]. 长沙: 国防科技大学, 2017

    Zhao Xuelong. Investigation on mode conversion in over-moded state and beam steering lens antenna for high power microwave applications[D]. Changsha: National University of Defense Technology, 2017
    [24] Sun Yunfei, Dang Fangchao, Yuan Chengwei, et al. A beam-steerable lens antenna for Ku-band high-power microwave applications[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(11): 7580-7583. doi: 10.1109/TAP.2020.2979282
    [25] Zhao Xuhao, Liu Mengqi, Sun Yunfei, et al. Design and experimental demonstration of a beam scanning lens antenna[J]. Review of Scientific Instruments, 2022, 93: 084703. doi: 10.1063/5.0091152
    [26] Bankman I. Frequency selective surfaces: theory and design [Book Review][J]. IEEE Signal Processing Magazine, 2001, 18: 94. doi: 10.1109/msp.2001.911199
    [27] 彭升人. 高功率微波TM0n混合模式诊断与转换发射技术研究[D]. 长沙: 国防科学技术大学, 2016

    Peng Shengren. Investigation on diagnosis and conversion transmission techniques of TM0n Mixed modes for high-power microwave applications[D]. Changsha: National University of Defense Technology, 2016
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  6
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-12-03
  • 修回日期:  2025-01-20
  • 录用日期:  2026-01-15
  • 网络出版日期:  2026-02-06

目录

    /

    返回文章
    返回