留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于神经网络的中子多重性测量方法可行性研究

冯元威 郑玉来 李永 刘超 张连军 黄喆 郭文慧

冯元威, 郑玉来, 李永, 等. 基于神经网络的中子多重性测量方法可行性研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250245
引用本文: 冯元威, 郑玉来, 李永, 等. 基于神经网络的中子多重性测量方法可行性研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250245
Feng Yuanwei, Zheng Yulai, Li Yong, et al. Feasibility study on neutron multiplicity counting method based on neural network[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250245
Citation: Feng Yuanwei, Zheng Yulai, Li Yong, et al. Feasibility study on neutron multiplicity counting method based on neural network[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250245

基于神经网络的中子多重性测量方法可行性研究

doi: 10.11884/HPLPB202638.250245
详细信息
    作者简介:

    冯元威,fyw_caini@foxmail.com

    通讯作者:

    郑玉来,mczyl@sina.com

  • 中图分类号: O571.53

Feasibility study on neutron multiplicity counting method based on neural network

  • 摘要: 中子多重性测量技术作为无损检测领域的核心手段,在裂变材料(235U)质量测定中发挥关键作用,但其存在测量周期冗长、非理想条件下存在测量偏差等技术瓶颈。借助Geant4与MATLAB软件构建主动井型符合计数器(AWCC)仿真模型实现主动中子多重性测量全流程的高精度模拟。在此基础上,基于PyTorch框架构建反向传播神经网络(BPNN)、卷积神经网络(CNN)、长短期记忆网络(LSTM)三种神经网络对中子多重性分布数据进行分析研究。结果表明,相较于传统主动中子多重性测量方法,三种神经网络模型在测量精度与效率方面均展现出显著优势,能够有效降低测量误差、缩短测量时间。研究结果不仅证实了基于神经网络的中子多重性测量方法的可行性,为中子多重性探测向高效化、智能化方向发展提供了新的解决方案。
  • 图  1  BPNN结构图[16]

    Figure  1.  BPNN structure diagram[16]

    图  2  CNN结构图(以LeNet5为例)[16]

    Figure  2.  CNN structure diagram (taking LeNet5 as an example)[16]

    图  3  LSTM结构图[16]

    Figure  3.  LSTM structure diagram[16]

    图  4  AWCC结构模型[21]

    Figure  4.  AWCC structural model[21]

    图  5  Geant4中构建的AWCC模型

    Figure  5.  AWCC model built in Geant4

    图  6  主动中子多重性测量计算结果

    Figure  6.  Calculation results of active neutron multiplicity measurement

    图  7  神经网络计算235U质量误差

    Figure  7.  The 235U mass error calculated by neural network

    表  1  AWCC计数器特征

    Table  1.   AWCC counter features

    pressure of 3He
    tube/MPa
    3He tube size
    (height×diameter)/cm
    3He tube
    quantity
    sample cavity size
    (height×diameter)/cm
    counter size
    (height×diameter)/cm
    AmLi source holder
    (height×diameter)/cm
    0.4 50.8×2.54 42 20.6×22.9 50.8×49.3 5.7×3.2
    下载: 导出CSV

    表  2  部分模拟计算结果

    Table  2.   Part of simulation calculation results

    total mass/g235U enrichment/%double coincidence rate D/s−1triple coincidence rate T/s−1prediction mass/gquality deviation/%
    3079.35100(235U 3079.35 g)1048.1844.93330.118.14
    3079.3595(235U 2925.38 g)963.7733.33089.955.61
    3079.3590(235U 2771.41 g)887.1629.22816.621.63
    3079.3585(235U 2617.45 g)812.9550.52682.632.49
    3079.3580(235U 2463.48 g)741.7478.22449.620.56
    3079.3570(235U 2115.54 g)625.3351.12086.871.36
    3079.3560(235U 1847.61 g)521.5256.71752.975.12
    下载: 导出CSV

    表  3  各方法计算计算235U质量误差结果

    Table  3.   The 235U mass error result calculated by each method

    methodmeasurement time/smean of relative error/%median of relative error/%max of relative error/%
    active neutron multiplicity analysis1 0003.322.2510.91
    LSTM1 0000.360.370.77
    LSTM1000.830.703.31
    LSTM102.502.0211.48
    LSTM16.445.2138.27
    1D-CNN1 0000.720.581.89
    1D-CNN1001.781.836.16
    1D-CNN102.412.0311.08
    1D-CNN16.495.2538.40
    2D-CNN1 0000.440.421.05
    2D-CNN1001.751.746.21
    2D-CNN102.471.9213.89
    BPNN1 0001.811.724.90
    BPNN1002.241.989.23
    BPNN103.282.7816.49
    BPNN17.586.5340.53
    下载: 导出CSV
  • [1] Shin T H, Di Fulvio A, Clarke S D, et al. Prompt fission neutron anisotropy in low-multiplying subcritical plutonium metal assemblies[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 915: 110-115. doi: 10.1016/j.nima.2018.09.085
    [2] Nakae L F, Chapline G F, Glenn A M, et al. The use of fast neutron detection for materials accountability[J]. International Journal of Modern Physics: Conference Series, 2014, 27: 1460140. doi: 10.1142/S2010194514601409
    [3] 易凌帆. 中子多重性测量分析方法仿真研究[D]. 衡阳: 南华大学, 2016

    Yi Lingfan. Simulation study of neutron multiplicity measurement and analysis methods[D]. Hengyang: University of South China, 2016
    [4] Di Fulvio A, Shin T H, Jordan T, et al. Passive assay of plutonium metal plates using a fast-neutron multiplicity counter[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 855: 92-101.
    [5] Di Fulvio A, Shin T H, Basley A, et al. Fast-neutron multiplicity counter for active measurements of uranium oxide certified material[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 907: 248-257. doi: 10.1016/j.nima.2018.05.049
    [6] Hou Suxia, Luo Jijun. Improvement of plutonium sample property measurement based on fast neutron multiplicity counting[J]. Annals of Nuclear Energy, 2021, 156: 108219. doi: 10.1016/j.anucene.2021.108219
    [7] Heger G, Dubi C, Ocherashvili A, et al. Identifying neutron shielding in neutron multiplicity counting[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 901: 40-45. doi: 10.1016/j.nima.2018.05.058
    [8] Langner D G, Stewart J E, Pickrell M M, et al. Application guide to neutron multiplicity counting[R]. LA-13422-M, 1998.
    [9] 刘晓波, 胡倩, 肖建国. 铀材料的中子多重性测量分析方法[J]. 核动力工程, 2009, 30(1): 74-77

    Liu Xiaobo, Hu Qian, Xiao Jianguo. Neutron multiplicity counting and analysis for uranium material[J]. Nuclear Power Engineering, 2009, 30(1): 74-77
    [10] Ming Xingchen, Zhang Hongfei, Xu Ruirui, et al. Nuclear mass based on the multi-task learning neural network method[J]. Nuclear Science and Techniques, 2022, 33: 48. doi: 10.1007/s41365-022-01031-z
    [11] 韦子豪, 王端, 王东东, 等. 神经网络-遗传复合算法在压水堆堆芯换料设计中的应用[J]. 原子能科学技术, 2020, 54(5): 825-834 doi: 10.7538/yzk.2019.youxian.0788

    Wei Zihao, Wang Duan, Wang Dongdong, et al. Application of neural network-genetic composite algorithm in core refueling design for PWR[J]. Atomic Energy Science and Technology, 2020, 54(5): 825-834 doi: 10.7538/yzk.2019.youxian.0788
    [12] Li Yongyi, Zhang Fan, Su Jun. Improvement of the Bayesian neural network to study the photoneutron yield cross sections[J]. Nuclear Science and Techniques, 2022, 33: 135. doi: 10.1007/s41365-022-01131-w
    [13] Shang Tianshuai, Li Jian, Niu Zhongming. Prediction of nuclear charge density distribution with feedback neural network[J]. Nuclear Science and Techniques, 2022, 33: 153. doi: 10.1007/s41365-022-01140-9
    [14] Wang Zi’ao, Pei Junchen, Liu Yue, et al. Bayesian evaluation of incomplete fission yields[J]. Physical Review Letters, 2019, 123: 122501. doi: 10.1103/PhysRevLett.123.122501
    [15] 黎素芬, 张全虎, 弟宇鸣, 等. 有源中子多重性测量计算机模拟研究[C]//第十六届全国核电子学与核探测技术学术年会论文集(下册). 2012: 654-661

    Li Sufen, Zhang Quanhu, Di Yuming, et al. Computer simulation research of active neutron multiplicity counting and analysis[C]//Proceedings of the 16th National Academic Annual Conference on Nuclear Electronics and Nuclear Detection Technology. 2012: 654-661
    [16] Zhang A, Lipton Z C, Li Mu, et al. Dive into deep learning[M]. Cambridge: Cambridge University Press, 2023.
    [17] Gu Jiuxiang, Wang Zhenhua, Kuen J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 77: 354-377. doi: 10.1016/j.patcog.2017.10.013
    [18] 杨丽, 吴雨茜, 王俊丽, 等. 循环神经网络研究综述[J]. 计算机应用, 2018, 38(s2): 1-6,26 doi: 10.11896/jsjkx.220600007

    Yang Li, Wu Yuxi, Wang Junli, et al. Research on recurrent neural network[J]. Journal of Computer Applications, 2018, 38(s2): 1-6,26 doi: 10.11896/jsjkx.220600007
    [19] Agostinelli S, Allison J, Amako K, et al. GEANT4—a simulation toolkit[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 506(3): 250-303.
    [20] Menlove H O. Description and operation manual for the active well coincidence counter[R]. LA-7823-M, 1979.
    [21] Canberra JCC-71 product description, Canberra, measurement solutions for nuclear safety and security[EB/OL]. 2010. http://www.canberra.com/products/715.asp.
    [22] 李永明, 王亮, 陈想林, 等. 252Cf自发裂变中子发射率符合测量的回归分析[J]. 物理学报, 2018, 67: 242901 doi: 10.7498/aps.67.20181073

    Li Yongming, Wang Liang, Chen Xianglin, et al. Regression analysis of coincidence measurements for determinating the neutron emission rate of 252Cf spontaneous fission[J]. Acta Physica Sinica, 2018, 67: 242901 doi: 10.7498/aps.67.20181073
    [23] Tagziria H, Looman M. The ideal neutron energy spectrum of 241AmLi(α, n)10B sources[J]. Applied Radiation and Isotopes, 2012, 70(10): 2395-2402. doi: 10.1016/j.apradiso.2012.07.008
    [24] 朱剑钰, 李瑞, 黄孟, 等. 用时序探测事件模拟提升中子多重性计算效率[J]. 强激光与粒子束, 2018, 30: 026003 doi: 10.11884/HPLPB201830.170256

    Zhu Jianyu, Li Rui, Huang Meng, et al. Improving calculation efficiency of neutron multiplicity counting by sequential detection events simulation[J]. High Power Laser and Particle Beams, 2018, 30: 026003 doi: 10.11884/HPLPB201830.170256
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  6
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-31
  • 修回日期:  2025-12-29
  • 录用日期:  2025-12-25
  • 网络出版日期:  2026-01-21

目录

    /

    返回文章
    返回