留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种色噪声下相干和非相干信号混合的DOA估计方法

王川川 韩慧 王满喜 王建路

王川川, 韩慧, 王满喜, 等. 一种色噪声下相干和非相干信号混合的DOA估计方法[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250250
引用本文: 王川川, 韩慧, 王满喜, 等. 一种色噪声下相干和非相干信号混合的DOA估计方法[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250250
Wang Chuanchuan, Han Hui, Wang Manxi, et al. A DOA estimation method for mixed coherent and incoherent signals under colored noise[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250250
Citation: Wang Chuanchuan, Han Hui, Wang Manxi, et al. A DOA estimation method for mixed coherent and incoherent signals under colored noise[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250250

一种色噪声下相干和非相干信号混合的DOA估计方法

doi: 10.11884/HPLPB202638.250250
基金项目: 重点实验室基金项目(CEMEE2024J0102)
详细信息
    作者简介:

    王川川,wangchuan1083@126.com

  • 中图分类号: TN911

A DOA estimation method for mixed coherent and incoherent signals under colored noise

  • 摘要: 复杂环境下,应用阵列测向系统进行DOA估计时,难以实现小样本、混叠色噪声且入射信号存在相干性情况下的DOA估计。面向窄带信号DOA估计需求,采用协方差矩阵收缩估计改善其小样本情况下的协方差估计效果,再应用协方差差分法对收缩后的协方差矩阵进行处理,以抑制色噪声和信号相干性,最后应用MUSIC算法进行DOA估计,提出一种小样本、混叠色噪声且入射信号存在相干性情况下的DOA估计方法。通过仿真实验验证了算法的有效性,为解决复杂环境下的DOA估计问题提供一种有效方案。
  • 图  1  残留噪声方差随相关系数$ \rho $的变化曲线[13]

    Figure  1.  Curve of residual noise variance versus correlation coefficient $ \rho $[13]

    图  2  $ \text{SNR=0 dB} $情况下DOA估计结果

    Figure  2.  Estimated results of DOA in the condition of $ \text{SNR=0 dB} $

    图  3  $ \text{SNR=10 dB} $情况下DOA估计结果

    Figure  3.  Estimated results of DOA in the condition of $ \text{SNR=10 dB} $

    图  4  $ \text{SNR=15 dB} $情况下DOA估计结果

    Figure  4.  Estimated results of DOA in the condition of $ \text{SNR=15 dB} $

    图  5  阵元数$ \text{M=11} $情况下DOA估计结果

    Figure  5.  Estimated results of DOA in the condition of the number of array elements $ \text{M=11} $

    图  6  阵元数M=20情况下DOA估计结果

    Figure  6.  Estimated results of DOA in the condition of the number of array elements M=20

    图  7  入射角度分别为−45°、−42°、−39°、21°、24°

    Figure  7.  Incident angles is −45°, −42°, −39°, 21°, 24° respectively

    图  8  入射角度分别为−45°、−44°、−43°、23°、24°

    Figure  8.  Incident angles is −45°, −44°, −43°, 23°, 24° respectively

  • [1] 张小飞, 李建峰, 徐大专. 传感器阵列测向与定位[M]. 北京: 电子工业出版社, 2025

    Zhang Xiaofei, Li Jianfeng, Xu Dazhuan. Direction finding and positioning with sensor array[M]. Beijing: Publishing House of Electronics Industry, 2025
    [2] 张薇. 基于矩阵重构的相干信源波达方向估计算法研究[D]. 哈尔滨: 哈尔滨工业大学, 2021

    Zhang Wei. Study on direction of arrival estimation for coherent signals based on matrix reconstruction[D]. Harbin: Harbin Institute of Technology, 2021
    [3] Capon J. High-resolution frequency-wavenumber spectrum analysis[J]. Proceedings of the IEEE, 1969, 57(8): 1408-1418. doi: 10.1109/PROC.1969.7278
    [4] Pisarenko V F. The retrieval of harmonics from a covariance function[J]. Geophysical Journal International, 1973, 33(3): 347-366. doi: 10.1111/j.1365-246X.1973.tb03424.x
    [5] Ng B P. Constraints for linear predictive and minimum-norm methods in bearing estimation[J]. IEE Proceedings F (Radar and Signal Processing), 1990, 137(3): 187-191. doi: 10.1049/ip-f-2.1990.0028
    [6] Chen Y H, Chiang C T. Kalman-based spatial domain forward-backward linear predictor for DOA estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 1995, 31(1): 474-479. doi: 10.1109/7.366330
    [7] Schmidt R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276-280. doi: 10.1109/TAP.1986.1143830
    [8] Roy R, Kailath T. ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(7): 984-995. doi: 10.1109/29.32276
    [9] Chen Feng, Yang Desen, Mo Shiqi. A DOA estimation algorithm based on eigenvalues ranking problem[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 9501315. doi: 10.1109/tim.2022.3232095
    [10] Xu Wenjie, Liu Mindong, Yi Shichao. Spectrum attention mechanism-based acoustic vector DOA estimation method in the presence of colored noise[J]. Applied Sciences, 2025, 15: 1473. doi: 10.3390/app15031473
    [11] 钱诚. 相干信源波达方向估计中的若干问题研究[D]. 哈尔滨: 哈尔滨工业大学, 2016

    Qian Cheng. Study on several key problems of coherent DOA estimation[D]. Harbin: Harbin Institute of Technology, 2016
    [12] Hu Jurong, Baidoo E, Tian Ying, et al. Hermitian transform-based differencing approach for angle estimation for bistatic MIMO radar under unknown colored noise field[J]. IEEE Access, 2020, 8: 129553-129561. doi: 10.1109/ACCESS.2020.3007547
    [13] Ma Xiurong, Dong Xuhao, Xie Yufeng. An improved spatial differencing method for DOA estimation with the coexistence of uncorrelated and coherent Signals[J]. IEEE Sensors Journal, 2016, 16(10): 3719-3723. doi: 10.1109/JSEN.2016.2532929
    [14] Qian Cheng, Huang Lei, Sidiropoulos N D, et al. Enhanced PUMA for direction-of-arrival estimation and its performance analysis[J]. IEEE Transactions on Signal Processing, 2016, 64(16): 4127-4137. doi: 10.1109/TSP.2016.2543206
    [15] Karth I, Smith A M. WaveFunctionCollapse: content generation via constraint solving and machine learning[J]. Journal of Latex Class Files, 2015, 14(8): 1-9. doi: 10.1109/tg.2021.3076368
    [16] Shi Heping, Li Zhuo, Liu Dun, et al. Efficient method of two-dimensional DOA estimation for coherent signals[J]. EURASIP Journal on Wireless Communications and Networking, 2017, 2017: 53. doi: 10.1186/s13638-017-0835-1
    [17] 邢秋军. 无源相干信号波达方向估计算法研究[D]. 哈尔滨: 哈尔滨工程大学, 2018

    Xing Qiujun. Research on DOA estimation algorithm of passive coherent signal[D]. Harbin: Harbin Engineering University, 2018
    [18] Li Jianxiong, Li Deming, Li Xianguo. A real-valued toeplitz matrix method for DOA estimation[J]. Canadian Journal of Electrical and Computer Engineering, 2020, 43(4): 350-356. doi: 10.1109/CJECE.2020.3005226
    [19] 邢路阳. 相干信源波达方向估计算法研究[D]. 北京: 北京工业大学, 2024

    Xing Luyang. Research on DOA estimation algorithm for coherent sources[D]. Beijing: Beijing University of Technology, 2024
    [20] Cong Jingyu, Wang Xianpeng, Lan Xiang, et al. A generalized noise reconstruction approach for robust DOA estimation[J]. IEEE Transactions on Radar Systems, 2023, 1: 382-394. doi: 10.1109/TRS.2023.3299184
    [21] Yang Long, Yang Yixin, Zhang Yahao. Subspace-based direction of arrival estimation in colored ambient noise environments[J]. Digital Signal Processing, 2020, 99: 102650. doi: 10.1016/j.dsp.2019.102650
    [22] Wang Junxiang, Wang Xianpeng, Xu Dingjie, et al. Robust angle estimation for MIMO radar with the coexistence of mutual coupling and colored noise[J]. Sensors, 2018, 18: 832. doi: 10.3390/s18030832
    [23] 饶伟, 贾凤勤, 李旦. 有色噪声下不相关和相干混合信号的DOA估计[J]. 电子学报, 2023, 51(3): 622-631 doi: 10.12263/DZXB.20211216

    Rao Wei, Jia Fengqin, Li Dan. DOA estimation of uncorrelated and coherent mixed signals in colored noise[J]. Acta Electronica Sinica, 2023, 51(3): 622-631 doi: 10.12263/DZXB.20211216
    [24] Yi Huiyue. Source enumeration via RMT estimator with adaptive decision criterion based on linear shrinkage estimation of noise eigenvalues using relatively few samples[J]. IET Signal Processing, 2022, 16(1): 26-44. doi: 10.1049/sil2.12077
    [25] 刘妍妍. 大维随机矩阵理论在阵列信号参数估计中的应用[D]. 长春: 吉林大学, 2017

    Liu Yanyan. Applications of large random matrix theory to array signal parameters estimation[D]. Changchun: Jilin University, 2017
    [26] 马内尔·马丁内斯-拉蒙, 阿琼·古普塔, 何塞·路易斯·罗霍-阿尔瓦雷斯, 等. 机器学习在电磁学和阵列天线处理中的应用[M]. 曾勇虎, 贾锐, 王川川, 等, 译. 北京: 国防工业出版社, 2024

    Martínez-Ramón M, Gupta A, Rojo-Álvarez J L, et al. Machine learning applications in electromagnetics and antenna array processing[M]. Zeng Yonghu, Jia Rui Wang Chuanchuan, et al, trans. Beijing: National Defense Industry Press, 2024
    [27] Shu Feng, Shi Baihua, Chen Yiwen, et al. A new heterogeneous hybrid massive MIMO receiver with an intrinsic ability of removing phase ambiguity of DOA estimation via machine learning[J]. IEEE Transactions on Machine Learning in Communications and Networking, 2025, 3: 17-29. doi: 10.1109/TMLCN.2024.3506874
    [28] Kyritsis A, Makri R, Uzunoglu N. Small UAS online audio DOA estimation and real-time identification using machine learning[J]. Sensors, 2022, 22: 8659. doi: 10.3390/s22228659
    [29] 韦娟, 陈茂楠, 宁方立. 基于子张量重构的宽带信号DOA估计[J]. 通信学报, 2025, 46(8): 31-40 doi: 10.11959/j.issn.1000-436x.2025152

    Wei Juan, Chen Maonan, Ning Fangli. DOA estimation of wideband signals based on sub-tensor reconstruction[J]. Journal on Communications, 2025, 46(8): 31-40 doi: 10.11959/j.issn.1000-436x.2025152
    [30] 董洁, 王立府, 王鹏. 基于分子群改进海象优化算法的矢量水听器宽带信号DOA估计[J]. 测试技术学报, 2024, 38(6): 642-651 doi: 10.3969/j.issn.1671-7449.2024076

    Dong Jie, Wang Lifu, Wang Peng. DOA estimation of wideband signals from vector hydrophones based on molecular group improved whale optimization algorithm[J]. Journal of Test and Measurement Technology, 2024, 38(6): 642-651 doi: 10.3969/j.issn.1671-7449.2024076
    [31] Huang Lei, So H C. Source enumeration via MDL criterion based on linear shrinkage estimation of noise subspace covariance matrix[J]. IEEE Transactions on Signal Processing, 2013, 61(19): 4806-4821. doi: 10.1109/TSP.2013.2273198
    [32] Liu Fulai, Wang Jinkun, Sun Changyin, et al. Spatial differencing method for DOA estimation under the coexistence of both uncorrelated and coherent signals[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(4): 2052-2062. doi: 10.1109/TAP.2012.2186216
  • 加载中
图(8)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  20
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-05
  • 修回日期:  2025-12-08
  • 录用日期:  2025-11-25
  • 网络出版日期:  2026-01-05

目录

    /

    返回文章
    返回