Design and verification of digital low-level RF control algorithms for an ultra-compact cyclotron
-
摘要: 为实现PET医用小型回旋加速器的自主研发,中国原子能科学研究院开展了9.5 MeV超紧凑型回旋加速器的设计与研究。为满足对加速器束流的稳定加速,研制了基于全数字硬件平台的高频低电平控制算法,为提升控制精度,增加反馈速率,设计了高速DDC下变频解调系统,针对于数字下变频后IQ序列分布于任意象限的问题,设计了一种创新的象限预处理模块,以拓展其在全平面坐标系的适用性。为实现自动频率补偿,设计并实现基于位置式PID的调谐环,集成了自适应限位保护机制和实时调谐检测功能,并支持一键启动调谐。利用构建的高可靠性的跨时钟域数据通路,为幅度环调节激励信号幅值提供精度与稳定性保障。通过自闭环测试,验证了解调算法的可靠性,在与加速器联合调试中,稳定引出内靶束流100 μA,腔压幅度稳定度为0.047%(RMSE),失谐角保持在0.46°(RMSE),充分验证了系统的稳定性和可靠性,满足了加速器对低电平控制系统的需求。Abstract:
Background The China Institute of Atomic Energy has designed of a 9.5 MeV ultra-compact cyclotron to support the independent of Positron Emission Tomography (PET) cyclotrons. A high-performance control system is critical for the equipment, as the stability of the acceleration field directly impacts beam quality.Purpose In order to ensure the stable acceleration of the accelerator beam, this study aims to develop a Low-Level Radio Frequency (LLRF) control algorithm based on a fully digital hardware platform.Methods To enhance control precision and increase the feedback rate, a high-speed Digital Down-Conversion(DDC) demodulation system was designed. Addressing the issue where the IQ sequence after digital down-conversion may be distributed in arbitrary quadrants, an innovative quadrant preprocessing module was developed to extend applicability across the Cartesian plane. A position-type Proportion-Integral-Derivative (PID) tuning loop was implemented for automatic frequency compensation, integrating adaptive protection, timed detection, and one-click startup. Furthermore,a robust cross-clock-domain data path is constructed to ensure accurate and stable amplitude regulation.Results Closed-loop tests verified the reliability of the demodulation system. During the joint commissioning with the accelerator, a stable internal target beam current of 100 μA was successfully extracted. The system achieved a cavity voltage amplitude stability of 0.047% (RMSE) and maintained a detuning angle of 0.46°(RMSE).Conclusion The experimental results demonstrate that the proposed LLRF system fully meets the control requirements of the accelerator. The design ensures high stability and precision, providing reliable technical support for the operation of the 9.5 MeV ultra-compact cyclotron.-
Key words:
- cyclotron /
- LLRF /
- FPGA /
- closed-loop control /
- cross-clock domain
-
表 1 9.5 MeV低电平解调参数
Table 1. Demodulation parameters of the 9.5 MeV low-level RF system
RF frequency/MHz sampling frequency/MHz low-pass fliter CIC decimation rate LO frequency/MHz 41.5 250 CIC、FIR 16 41.5 表 2 几何等效变换
Table 2. Geometric Equivalent Transformation
quadrant transformed coordinates (X0,Y0) geometric equivalence Ⅰ (x, y) identity transformation Ⅱ (y, −x) 90° counter-clockwise rotation Ⅲ (−x, −y) origin symmetry Ⅳ (−y, x) 270° counter-clockwise rotation -
[1] Phelps M E. PET: the merging of biology and imaging into molecular imaging[J]. Journal of Nuclear Medicine, 2000, 41(4): 661-681. [2] 安世忠, 管锋平, 魏素敏, 等. 中国原子能科学研究院紧凑型强流质子回旋加速器的发展和应用[J]. 原子能科学技术, 2024, 58(s1): 464-474 doi: 10.7538/yzk.2024.youxian.0514An Shizhong, Guan Fengping, Wei Sumin, et al. Development and application of compact high-current proton cyclotron at China Institute of Atomic Energy[J]. Atomic Energy Science and Technology, 2024, 58(s1): 464-474 doi: 10.7538/yzk.2024.youxian.0514 [3] 殷治国, 侯世刚, 夏乐, 等. 100MeV强流回旋加速器射频数字低电平系统研制[J]. 高能物理与核物理, 2007, 31(10): 962-966Yin Zhiguo, Hou Shigang, Xia Le, et al. Design of a digital LLRF control system for the 100MeV high intensity cyclotron[J]. High Energy Physics and Nuclear Physics, 2007, 31(10): 962-966 [4] Yin Zhiguo, Fu Xiaoliang, Ji Bin, et al. RF control hardware design for CYCIAE-100 cyclotron[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 801: 104-107. [5] 牟雪儿, 殷治国, 魏俊逸, 等. 250MeV回旋加速器高频低电平系统设计[J]. 原子能科学技术, 2023, 57(7): 1416-1424 doi: 10.7538/yzk.2022.youxian.0787Mu Xueer, Yin Zhiguo, Wei Junyi, et al. Design of low level RF control system for 250 MeV cyclotron[J]. Atomic Energy Science and Technology, 2023, 57(7): 1416-1424 doi: 10.7538/yzk.2022.youxian.0787 [6] 付晓亮, 殷治国, Fong K, 等. 用于回旋加速器低电平系统的通用软硬件系统设计与实现[J]. 原子能科学技术, 2021, 55(10): 1885-1892 doi: 10.7538/yzk.2020.youxian.0831Fu Xiaoliang, Yin Zhiguo, Fong K, et al. Design and implementation of general hardware and firmware for cyclotron low level radio frequency system[J]. Atomic Energy Science and Technology, 2021, 55(10): 1885-1892 doi: 10.7538/yzk.2020.youxian.0831 [7] Futatsukawa K, Fang Zhigao, Fukui Y, et al. Development of new LLRF system at the J-PARC linac[C]//Proceedings of the 29th Linear Accelerator Conference. 2018. [8] Fu Xiaoliang, Fong K, Zheng Qiwen, et al. Digital LLRF system for TRIUMF ISIS buncher[DB/OL]. arXiv preprint arXiv: 2310.11473, 2023. [9] Liu C, Ruckman L, Herbst R, et al. High-power test of a c-band linear accelerating structure with an RFSoC-based LLRF system[J]. Review of Scientific Instruments, 2025, 96: 043311. doi: 10.1063/5.0258520 [10] Du Qiang, Doolittle L, Betz M, et al. Digital low-level RF control system for advanced light source storage ring[DB/OL]. arXiv preprint arXiv: 1910.07175, 2019. [11] 吕海艇. TTX直线加速器数字化高频低电平控制系统研究[D]. 北京: 清华大学, 2013Lü Haiting. Research on digital LLRF control system for TTX linac[D]. Beijing: Tsinghua University, 2013 [12] Schilcher T. Vector sum control of pulsed accelerating fields in Lorentz force detuned superconducting cavities[D]. Hamburg: University of Hamburg, 1998. [13] 田村文彦. J-PARC RCS次世代LLRF制御システムの導入[J]. 加速器, 2021, 18(3): 151-160Tamura F. Deployment of the next-generation LLRF control system for the J-PARC RCS[J]. Journal of the Particle Accelerator Society of Japan, 2021, 18(3): 151-160 [14] Schilcher T. RF applications in digital signal processing[C]//CAS - CERN Accelerator School: Course on Digital Signal Processing. 2008. [15] Wang Yiming, Regan A, Kwon S I, et al. Digital LLRF control system design and implementation for APT superconducting cavities[C]//Proceedings of 1999 Particle Accelerator Conference. 1999: 1070-1072. [16] Sun An, Sohn Y U, Kang H S, et al. Design of LLRF control system for PLS-II superconducting cavities[C]//Proceedings of LINAC 2010. 2010. [17] Meyer-Bäse U, Meyer-Bäse A, Hilberg W. COordinate rotation digital computer (CORDIC) synthesis for FPGA[C]//Proceedings of the 4th International Workshop on Field-Programmable Logic and Applications. 1994: 397-408. [18] Shu Z, Shen L G, Li M J, et al. Numerical calculus of resonant frequency change by 3D reconstruction of thermal deformed accelerator tube[C]//Proceedings of PAC09. 2009. [19] 严平, 汪学刚, 钱璐. 一种基于CORDIC算法的高速高精度数字鉴相器[J]. 电讯技术, 2008, 48(4): 76-79 doi: 10.3969/j.issn.1001-893X.2008.04.018Yan Ping, Wang Xuegang, Qian Lu. A high-speed and high-accuracy digital phase demodulator based on CORDIC algorithm[J]. Telecommunication Engineering, 2008, 48(4): 76-79 doi: 10.3969/j.issn.1001-893X.2008.04.018 [20] 殷治国, 宫鹏飞, 付晓亮, 等. 230MeV超导回旋加速器高频低电平系统设计与桌面实验研究[J]. 原子能科学技术, 2018, 52(9): 1716-1721Yin Zhiguo, Gong Pengfei, Fu Xiaoliang, et al. Design and desktop experiment of LLRF system for CYCIAE-230 superconducting cyclotron[J]. Atomic Energy Science and Technology, 2018, 52(9): 1716-1721 [21] Altera. Understanding Metastability in FPGAs[EB/OL]. (Altera) white paper, 2009. https://www.techonline.com/tech-papers/understanding-metastability-in-fpgas/. [22] Ginosar R. Metastability and synchronizers: a tutorial[J]. IEEE Design & Test of Computers, 2011, 28(5): 23-35. doi: 10.1109/MDT.2011.113 -
下载: