留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超紧凑回旋加速器数字化低电平控制算法设计及验证

吴继敏 黄鹏 魏俊逸 管锋平 纪彬 张庭锋 张嘉怡 孙昊 王亚晴 李贤平

吴继敏, 黄鹏, 魏俊逸, 等. 超紧凑回旋加速器数字化低电平控制算法设计及验证[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250282
引用本文: 吴继敏, 黄鹏, 魏俊逸, 等. 超紧凑回旋加速器数字化低电平控制算法设计及验证[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250282
Wu Jimin, Huang Peng, Wei Junyi, et al. Design and verification of digital low-level RF control algorithms for an ultra-compact cyclotron[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250282
Citation: Wu Jimin, Huang Peng, Wei Junyi, et al. Design and verification of digital low-level RF control algorithms for an ultra-compact cyclotron[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250282

超紧凑回旋加速器数字化低电平控制算法设计及验证

doi: 10.11884/HPLPB202638.250282
基金项目: 国家自然科学基金项目(12205379)
详细信息
    作者简介:

    吴继敏,1319389636@qq.com

    通讯作者:

    黄 鹏,p7_huang@163.com

  • 中图分类号: TL57

Design and verification of digital low-level RF control algorithms for an ultra-compact cyclotron

  • 摘要: 为实现PET医用小型回旋加速器的自主研发,中国原子能科学研究院开展了9.5 MeV超紧凑型回旋加速器的设计与研究。为满足对加速器束流的稳定加速,研制了基于全数字硬件平台的高频低电平控制算法,为提升控制精度,增加反馈速率,设计了高速DDC下变频解调系统,针对于数字下变频后IQ序列分布于任意象限的问题,设计了一种创新的象限预处理模块,以拓展其在全平面坐标系的适用性。为实现自动频率补偿,设计并实现基于位置式PID的调谐环,集成了自适应限位保护机制和实时调谐检测功能,并支持一键启动调谐。利用构建的高可靠性的跨时钟域数据通路,为幅度环调节激励信号幅值提供精度与稳定性保障。通过自闭环测试,验证了解调算法的可靠性,在与加速器联合调试中,稳定引出内靶束流100 μA,腔压幅度稳定度为0.047%(RMSE),失谐角保持在0.46°(RMSE),充分验证了系统的稳定性和可靠性,满足了加速器对低电平控制系统的需求。
  • 图  1  9.5 MeV全数字低电平系统框图

    Figure  1.  Block diagram of the 9.5 MeV fully digital lLow-level RF system

    图  2  实时解调系统频域分析

    Figure  2.  Frequency-domain analysis of the real-time demodulation system

    图  3  CORDIC计算误差仿真

    Figure  3.  Simulation of CORDIC Computational Errors

    图  4  相位测试

    Figure  4.  Phase Measurement

    图  5  调谐环路控制流程图

    Figure  5.  Tuning loop control flowchart

    图  6  跨时钟域数据通路

    Figure  6.  Cross-clock-domain data path

    图  7  自闭环测试

    Figure  7.  Closed-loop self-test results

    图  8  实际测试图

    Figure  8.  Photographs of experimental results

    图  9  内靶趋势图

    Figure  9.  Trend of internal target beam current

    图  10  稳定性测试结果

    Figure  10.  Stability test results

    表  1  9.5 MeV低电平解调参数

    Table  1.   Demodulation parameters of the 9.5 MeV low-level RF system

    RF frequency/MHz sampling frequency/MHz low-pass fliter CIC decimation rate LO frequency/MHz
    41.5 250 CIC、FIR 16 41.5
    下载: 导出CSV

    表  2  几何等效变换

    Table  2.   Geometric Equivalent Transformation

    quadrant transformed coordinates (X0,Y0) geometric equivalence
    (x, y) identity transformation
    (y, −x) 90° counter-clockwise rotation
    (−x, −y) origin symmetry
    (−y, x) 270° counter-clockwise rotation
    下载: 导出CSV
  • [1] Phelps M E. PET: the merging of biology and imaging into molecular imaging[J]. Journal of Nuclear Medicine, 2000, 41(4): 661-681.
    [2] 安世忠, 管锋平, 魏素敏, 等. 中国原子能科学研究院紧凑型强流质子回旋加速器的发展和应用[J]. 原子能科学技术, 2024, 58(s1): 464-474 doi: 10.7538/yzk.2024.youxian.0514

    An Shizhong, Guan Fengping, Wei Sumin, et al. Development and application of compact high-current proton cyclotron at China Institute of Atomic Energy[J]. Atomic Energy Science and Technology, 2024, 58(s1): 464-474 doi: 10.7538/yzk.2024.youxian.0514
    [3] 殷治国, 侯世刚, 夏乐, 等. 100MeV强流回旋加速器射频数字低电平系统研制[J]. 高能物理与核物理, 2007, 31(10): 962-966

    Yin Zhiguo, Hou Shigang, Xia Le, et al. Design of a digital LLRF control system for the 100MeV high intensity cyclotron[J]. High Energy Physics and Nuclear Physics, 2007, 31(10): 962-966
    [4] Yin Zhiguo, Fu Xiaoliang, Ji Bin, et al. RF control hardware design for CYCIAE-100 cyclotron[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 801: 104-107.
    [5] 牟雪儿, 殷治国, 魏俊逸, 等. 250MeV回旋加速器高频低电平系统设计[J]. 原子能科学技术, 2023, 57(7): 1416-1424 doi: 10.7538/yzk.2022.youxian.0787

    Mu Xueer, Yin Zhiguo, Wei Junyi, et al. Design of low level RF control system for 250 MeV cyclotron[J]. Atomic Energy Science and Technology, 2023, 57(7): 1416-1424 doi: 10.7538/yzk.2022.youxian.0787
    [6] 付晓亮, 殷治国, Fong K, 等. 用于回旋加速器低电平系统的通用软硬件系统设计与实现[J]. 原子能科学技术, 2021, 55(10): 1885-1892 doi: 10.7538/yzk.2020.youxian.0831

    Fu Xiaoliang, Yin Zhiguo, Fong K, et al. Design and implementation of general hardware and firmware for cyclotron low level radio frequency system[J]. Atomic Energy Science and Technology, 2021, 55(10): 1885-1892 doi: 10.7538/yzk.2020.youxian.0831
    [7] Futatsukawa K, Fang Zhigao, Fukui Y, et al. Development of new LLRF system at the J-PARC linac[C]//Proceedings of the 29th Linear Accelerator Conference. 2018.
    [8] Fu Xiaoliang, Fong K, Zheng Qiwen, et al. Digital LLRF system for TRIUMF ISIS buncher[DB/OL]. arXiv preprint arXiv: 2310.11473, 2023.
    [9] Liu C, Ruckman L, Herbst R, et al. High-power test of a c-band linear accelerating structure with an RFSoC-based LLRF system[J]. Review of Scientific Instruments, 2025, 96: 043311. doi: 10.1063/5.0258520
    [10] Du Qiang, Doolittle L, Betz M, et al. Digital low-level RF control system for advanced light source storage ring[DB/OL]. arXiv preprint arXiv: 1910.07175, 2019.
    [11] 吕海艇. TTX直线加速器数字化高频低电平控制系统研究[D]. 北京: 清华大学, 2013

    Lü Haiting. Research on digital LLRF control system for TTX linac[D]. Beijing: Tsinghua University, 2013
    [12] Schilcher T. Vector sum control of pulsed accelerating fields in Lorentz force detuned superconducting cavities[D]. Hamburg: University of Hamburg, 1998.
    [13] 田村文彦. J-PARC RCS次世代LLRF制御システムの導入[J]. 加速器, 2021, 18(3): 151-160

    Tamura F. Deployment of the next-generation LLRF control system for the J-PARC RCS[J]. Journal of the Particle Accelerator Society of Japan, 2021, 18(3): 151-160
    [14] Schilcher T. RF applications in digital signal processing[C]//CAS - CERN Accelerator School: Course on Digital Signal Processing. 2008.
    [15] Wang Yiming, Regan A, Kwon S I, et al. Digital LLRF control system design and implementation for APT superconducting cavities[C]//Proceedings of 1999 Particle Accelerator Conference. 1999: 1070-1072.
    [16] Sun An, Sohn Y U, Kang H S, et al. Design of LLRF control system for PLS-II superconducting cavities[C]//Proceedings of LINAC 2010. 2010.
    [17] Meyer-Bäse U, Meyer-Bäse A, Hilberg W. COordinate rotation digital computer (CORDIC) synthesis for FPGA[C]//Proceedings of the 4th International Workshop on Field-Programmable Logic and Applications. 1994: 397-408.
    [18] Shu Z, Shen L G, Li M J, et al. Numerical calculus of resonant frequency change by 3D reconstruction of thermal deformed accelerator tube[C]//Proceedings of PAC09. 2009.
    [19] 严平, 汪学刚, 钱璐. 一种基于CORDIC算法的高速高精度数字鉴相器[J]. 电讯技术, 2008, 48(4): 76-79 doi: 10.3969/j.issn.1001-893X.2008.04.018

    Yan Ping, Wang Xuegang, Qian Lu. A high-speed and high-accuracy digital phase demodulator based on CORDIC algorithm[J]. Telecommunication Engineering, 2008, 48(4): 76-79 doi: 10.3969/j.issn.1001-893X.2008.04.018
    [20] 殷治国, 宫鹏飞, 付晓亮, 等. 230MeV超导回旋加速器高频低电平系统设计与桌面实验研究[J]. 原子能科学技术, 2018, 52(9): 1716-1721

    Yin Zhiguo, Gong Pengfei, Fu Xiaoliang, et al. Design and desktop experiment of LLRF system for CYCIAE-230 superconducting cyclotron[J]. Atomic Energy Science and Technology, 2018, 52(9): 1716-1721
    [21] Altera. Understanding Metastability in FPGAs[EB/OL]. (Altera) white paper, 2009. https://www.techonline.com/tech-papers/understanding-metastability-in-fpgas/.
    [22] Ginosar R. Metastability and synchronizers: a tutorial[J]. IEEE Design & Test of Computers, 2011, 28(5): 23-35. doi: 10.1109/MDT.2011.113
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  10
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-04
  • 修回日期:  2026-01-06
  • 录用日期:  2025-12-31
  • 网络出版日期:  2026-01-21

目录

    /

    返回文章
    返回