| [1] |
刘什敏. 脑组织替代材料在BNCT中的蒙特卡罗模拟[D]. 长春: 东北师范大学, 2007Liu Shimin. Monte Carlo simulation of brain tissue substitutes in boron neutron capture treatment[D]. Changchun: Northeast Normal University, 2007
|
| [2] |
Donya H, Alzahrani N M, Abdulsalam A, et al. Boron neutron capture therapy: a promising radiation treatment modality[J]. Radiation and Environmental Biophysics, 2025, 64(3): 339-353. doi: 10.1007/s00411-025-01134-2
|
| [3] |
Dymova M A, Taskaev S Y, Richter V A, et al. Boron neutron capture therapy: current status and future perspectives[J]. Cancer Communications, 2020, 40(9): 406-421. doi: 10.1002/cac2.12089
|
| [4] |
Zamenhof R G, Clement S D, Harling O K, et al. Monte Carlo based dosimetry and treatment planning for neutron capture therapy of brain tumors[M]//Harling O K, Bernard J A, Zamenhof R G. Neutron Beam Design, Development, and Performance for Neutron Capture Therapy. New York: Springer, 1990: 283-305.
|
| [5] |
Briesmeister J F. MCNP: a general monte Carlo N-particle transport code[R]. LA-13709-M, 2000.
|
| [6] |
Kumada H, Takada K, Sakurai Y, et al. Development of a multimodal Monte Carlo based treatment planning system[J]. Radiation Protection Dosimetry, 2018, 180(1/4): 286-290.
|
| [7] |
Sato T, Iwamoto Y, Hashimoto S, et al. Features of particle and heavy ion transport code system (PHITS) version 3.02[J]. Journal of Nuclear Science and Technology, 2018, 55(6): 684-690. doi: 10.1080/00223131.2017.1419890
|
| [8] |
Kumada H, Takada K, Aihara T, et al. Verification for dose estimation performance of a Monte-Carlo based treatment planning system in University of Tsukuba[J]. Applied Radiation and Isotopes, 2020, 166: 109222. doi: 10.1016/j.apradiso.2020.109222
|
| [9] |
Kumada H, Takada K, Yamanashi K, et al. Verification of nuclear data for the Tsukuba plan, a newly developed treatment planning system for boron neutron capture therapy[J]. Applied Radiation and Isotopes, 2015, 106: 111-115. doi: 10.1016/j.apradiso.2015.08.032
|
| [10] |
Zhong Wanbing, Chen Jiang, Teng Y C, et al. Introduction to the Monte Carlo dose engine COMPASS for BNCT[J]. Scientific Reports, 2023, 13: 11965. doi: 10.1038/s41598-023-38648-y
|
| [11] |
Chen Jiang, Teng Y C, Zhong Wanbing, et al. Development of Monte Carlo based treatment planning system for BNCT[J]. Journal of Physics: Conference Series, 2022, 2313: 012012. doi: 10.1088/1742-6596/2313/1/012012
|
| [12] |
Teng Y C, Chen Jiang, Zhong Wanbing, et al. Correcting for the heterogeneous boron distribution in a tumor for BNCT dose calculation[J]. Scientific Reports, 2023, 13: 15741. doi: 10.1038/s41598-023-42284-x
|
| [13] |
Teng Y C, Chen Jiang, Zhong Wanbing, et al. HU-based material conversion for BNCT accurate dose estimation[J]. Scientific Reports, 2023, 13: 15701. doi: 10.1038/s41598-023-42508-0
|
| [14] |
Li Li, Sun Xiaoping, Lin Fu, et al. 18F-BPA as a surrogate tracer for BPA in BNCT: comparative analysis of transport mechanisms and biodistribution[J]. Journal of Radiation Research, 2025: rraf070.
|
| [15] |
He Qingming, Zheng Qi, Li Jie, et al. NECP-MCX: a hybrid Monte-Carlo-Deterministic particle-transport code for the simulation of deep-penetration problems[J]. Annals of Nuclear Energy, 2021, 151: 107978. doi: 10.1016/j.anucene.2020.107978
|
| [16] |
He Qingming, Zheng Qi, Li Jie, et al. Overview of the new capabilities in the Monte-Carlo particle-transport code NECP-MCX V2.0[J]. EPJ Nuclear Sciences & Technologies, 2024, 10: 14. doi: 10.1051/epjn/2024014
|
| [17] |
Peng Heyu, Zheng Qi, He Qingming, et al. Acceleration study of a BNCT dose calculation engine based on NECP-MCX[J]. Journal of Nuclear Science and Technology, 2025: 1-9.
|
| [18] |
Hirose K, Konno A, Hiratsuka J, et al. Boron neutron capture therapy using cyclotron-based epithermal neutron source and borofalan (10B) for recurrent or locally advanced head and neck cancer (JHN002): an open-label phase II trial[J]. Radiotherapy and Oncology, 2021, 155: 182-187. doi: 10.1016/j.radonc.2020.11.001
|
| [19] |
Yamamoto T, Nakai K, Matsumura A. Boron neutron capture therapy for glioblastoma[J]. Cancer Letters, 2008, 262(2): 143-152. doi: 10.1016/j.canlet.2008.01.021
|