留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于蒙特卡罗方法的BNCT头部肿瘤案例的剂量学研究

彭贺宇 郑琪 汪威 贺清明 曹良志 祖铁军 王永平

彭贺宇, 郑琪, 汪威, 等. 基于蒙特卡罗方法的BNCT头部肿瘤案例的剂量学研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250291
引用本文: 彭贺宇, 郑琪, 汪威, 等. 基于蒙特卡罗方法的BNCT头部肿瘤案例的剂量学研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250291
Peng Heyu, Zheng Qi, Wang Wei, et al. BNCT dosimetric study of head tumor cases based on Monte Carlo methods[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250291
Citation: Peng Heyu, Zheng Qi, Wang Wei, et al. BNCT dosimetric study of head tumor cases based on Monte Carlo methods[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250291

基于蒙特卡罗方法的BNCT头部肿瘤案例的剂量学研究

doi: 10.11884/HPLPB202638.250291
基金项目: 国家重点研发计划(2023YFA1008600); 国家自然科学基金(12275207)
详细信息
    作者简介:

    彭贺宇,gorgeous@stu.xjtu.edu.cn

    通讯作者:

    郑 琪,zhengqi@xjtu.edu.cn

  • 中图分类号: TL99

BNCT dosimetric study of head tumor cases based on Monte Carlo methods

  • 摘要: 硼中子俘获治疗(BNCT)作为创新型二元靶向治疗技术,通过肿瘤靶向性10B药物与中子束照射协同作用,实现细胞层面的精准治疗,但因中子输运过程复杂,临床治疗计划制定依赖的蒙特卡罗方法存在计算耗时长的问题,且该技术针对头部肿瘤的剂量学研究不足。本研究针对BNCT治疗需求,基于NECP-MCX开展了蒙特卡罗算法的加速优化与前后处理模块开发,将单次剂量计算时间从2小时缩短至9.4分钟;并采用MCNP与NECP-MCX两种蒙特卡罗程序,对一例头部肿瘤病例开展剂量分布计算研究,验证了前后端处理和计算核心的准确性,也确保了数据可靠。该肿瘤案例的计算结果表明,在有效治疗深度内,具有显著的肿瘤靶向硼剂量沉积特性。治疗效果上,BNCT能够实现在63分钟的治疗时间,保证肿瘤靶区剂量90%的区域达到60 Gy的最佳治疗剂量的同时,健康组织剂量低于12.5 Gy。
  • 图  1  RADCURE-700的三维头部模型及中子源

    Figure  1.  3D model and neutron source of RADCURE-700

    图  2  BSA出口源能谱

    Figure  2.  energy spectrum of neutron source from BSA

    图  3  RADCURE-700的BNCT剂量率-深度曲线

    Figure  3.  BNCT dose depth distribution of RADCURE-700

    图  4  NECP-MCX和MCX在RADCURE-700的BNCT剂量计算的相对统计偏差

    Figure  4.  BNCT dose relative statistic error depth distribution of RADCURE-700

    图  5  NECP-MCX和MCX在RADCURE-700的BNCT四种剂量的相对偏差

    Figure  5.  BNCT dose relative error between NECP-MCX and MCNP

    图  6  NECP-MCX和MCNP在RADCURE-700的BNCT总生物剂量的DVH

    Figure  6.  DVH of total biology dose calculated by NECP-MCX and MCNP

    图  7  NECP-MCX和MCNP在RADCURE-700的肿瘤中部切片的剂量云图

    Figure  7.  dose distribution cloud visualization calculated by NECP-MCX and MCNP

  • [1] 刘什敏. 脑组织替代材料在BNCT中的蒙特卡罗模拟[D]. 长春: 东北师范大学, 2007

    Liu Shimin. Monte Carlo simulation of brain tissue substitutes in boron neutron capture treatment[D]. Changchun: Northeast Normal University, 2007
    [2] Donya H, Alzahrani N M, Abdulsalam A, et al. Boron neutron capture therapy: a promising radiation treatment modality[J]. Radiation and Environmental Biophysics, 2025, 64(3): 339-353. doi: 10.1007/s00411-025-01134-2
    [3] Dymova M A, Taskaev S Y, Richter V A, et al. Boron neutron capture therapy: current status and future perspectives[J]. Cancer Communications, 2020, 40(9): 406-421. doi: 10.1002/cac2.12089
    [4] Zamenhof R G, Clement S D, Harling O K, et al. Monte Carlo based dosimetry and treatment planning for neutron capture therapy of brain tumors[M]//Harling O K, Bernard J A, Zamenhof R G. Neutron Beam Design, Development, and Performance for Neutron Capture Therapy. New York: Springer, 1990: 283-305.
    [5] Briesmeister J F. MCNP: a general monte Carlo N-particle transport code[R]. LA-13709-M, 2000.
    [6] Kumada H, Takada K, Sakurai Y, et al. Development of a multimodal Monte Carlo based treatment planning system[J]. Radiation Protection Dosimetry, 2018, 180(1/4): 286-290.
    [7] Sato T, Iwamoto Y, Hashimoto S, et al. Features of particle and heavy ion transport code system (PHITS) version 3.02[J]. Journal of Nuclear Science and Technology, 2018, 55(6): 684-690. doi: 10.1080/00223131.2017.1419890
    [8] Kumada H, Takada K, Aihara T, et al. Verification for dose estimation performance of a Monte-Carlo based treatment planning system in University of Tsukuba[J]. Applied Radiation and Isotopes, 2020, 166: 109222. doi: 10.1016/j.apradiso.2020.109222
    [9] Kumada H, Takada K, Yamanashi K, et al. Verification of nuclear data for the Tsukuba plan, a newly developed treatment planning system for boron neutron capture therapy[J]. Applied Radiation and Isotopes, 2015, 106: 111-115. doi: 10.1016/j.apradiso.2015.08.032
    [10] Zhong Wanbing, Chen Jiang, Teng Y C, et al. Introduction to the Monte Carlo dose engine COMPASS for BNCT[J]. Scientific Reports, 2023, 13: 11965. doi: 10.1038/s41598-023-38648-y
    [11] Chen Jiang, Teng Y C, Zhong Wanbing, et al. Development of Monte Carlo based treatment planning system for BNCT[J]. Journal of Physics: Conference Series, 2022, 2313: 012012. doi: 10.1088/1742-6596/2313/1/012012
    [12] Teng Y C, Chen Jiang, Zhong Wanbing, et al. Correcting for the heterogeneous boron distribution in a tumor for BNCT dose calculation[J]. Scientific Reports, 2023, 13: 15741. doi: 10.1038/s41598-023-42284-x
    [13] Teng Y C, Chen Jiang, Zhong Wanbing, et al. HU-based material conversion for BNCT accurate dose estimation[J]. Scientific Reports, 2023, 13: 15701. doi: 10.1038/s41598-023-42508-0
    [14] Li Li, Sun Xiaoping, Lin Fu, et al. 18F-BPA as a surrogate tracer for BPA in BNCT: comparative analysis of transport mechanisms and biodistribution[J]. Journal of Radiation Research, 2025: rraf070.
    [15] He Qingming, Zheng Qi, Li Jie, et al. NECP-MCX: a hybrid Monte-Carlo-Deterministic particle-transport code for the simulation of deep-penetration problems[J]. Annals of Nuclear Energy, 2021, 151: 107978. doi: 10.1016/j.anucene.2020.107978
    [16] He Qingming, Zheng Qi, Li Jie, et al. Overview of the new capabilities in the Monte-Carlo particle-transport code NECP-MCX V2.0[J]. EPJ Nuclear Sciences & Technologies, 2024, 10: 14. doi: 10.1051/epjn/2024014
    [17] Peng Heyu, Zheng Qi, He Qingming, et al. Acceleration study of a BNCT dose calculation engine based on NECP-MCX[J]. Journal of Nuclear Science and Technology, 2025: 1-9.
    [18] Hirose K, Konno A, Hiratsuka J, et al. Boron neutron capture therapy using cyclotron-based epithermal neutron source and borofalan (10B) for recurrent or locally advanced head and neck cancer (JHN002): an open-label phase II trial[J]. Radiotherapy and Oncology, 2021, 155: 182-187. doi: 10.1016/j.radonc.2020.11.001
    [19] Yamamoto T, Nakai K, Matsumura A. Boron neutron capture therapy for glioblastoma[J]. Cancer Letters, 2008, 262(2): 143-152. doi: 10.1016/j.canlet.2008.01.021
  • 加载中
图(7)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  6
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-08
  • 修回日期:  2025-12-29
  • 录用日期:  2025-12-25
  • 网络出版日期:  2026-01-21

目录

    /

    返回文章
    返回