留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低剖面宽波束圆极化天线单元及其宽角扫描阵列设计

刘佳鑫 郭乙颗 李方位 郭庆功

刘佳鑫, 郭乙颗, 李方位, 等. 低剖面宽波束圆极化天线单元及其宽角扫描阵列设计[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250297
引用本文: 刘佳鑫, 郭乙颗, 李方位, 等. 低剖面宽波束圆极化天线单元及其宽角扫描阵列设计[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250297
Liu Jiaxin, Guo Yike, Li Fangwei, et al. Design of low-profile circularly polarized antenna element for wide-angle scanning array[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250297
Citation: Liu Jiaxin, Guo Yike, Li Fangwei, et al. Design of low-profile circularly polarized antenna element for wide-angle scanning array[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250297

低剖面宽波束圆极化天线单元及其宽角扫描阵列设计

doi: 10.11884/HPLPB202638.250297
基金项目: 国家自然科学基金项目(62171301)
详细信息
    作者简介:

    刘佳鑫,1249227903@qq.com

    通讯作者:

    郭庆功,guoqingong@scu.edu.cn

  • 中图分类号: TN828

Design of low-profile circularly polarized antenna element for wide-angle scanning array

  • 摘要: 针对低轨卫星通信中圆极化相控阵扫描角度窄、剖面高的挑战,本文设计了一款低剖面、宽波束圆极化天线单元及其宽角扫描阵列。该单元采用双层结构,通过四角微扰与交叉缝隙实现左旋圆极化,并利用上层寄生结构与金属柱基于方向图叠加原理将波束宽度拓展至120°,轴比波束宽度大于175°,剖面高度仅0.07λ0。基于该单元构建的4×4旋转阵列,结合接地板环形开口槽设计,有效抑制了互耦。仿真结果表明,阵列在±60°扫描范围内轴比始终低于2 dB,且增益变化平缓,实现了优异的宽角圆极化扫描性能。
  • 图  1  天线单元

    Figure  1.  Antenna element

    图  2  主要参数对天线单元AR-BW $ \theta $的影响

    Figure  2.  Effect of key parameters on the AR-BW $ \theta $ of the antenna element

    图  3  H2对波束宽度和增益的影响

    Figure  3.  Effect of H2 on beam width and gain

    图  4  天线加工样品图片与天线测试场景图片

    Figure  4.  Image of antenna processing sample and image of test scenario

    图  5  驻波比和轴比带宽的仿真和测试图

    Figure  5.  VSWR and AR-BWf simulation and measured

    图  6  增益仿真与测试图

    Figure  6.  The simulated and measured gain

    图  7  轴比波束宽度仿真与测试图

    Figure  7.  Simulated and measured axial ratio beam width

    图  8  阵列天线俯视图和开口槽对S参数的影响

    Figure  8.  Top view of the antenna array and effect of the aperture slot on S-parameters

    图  9  阵列天线扫描结果

    Figure  9.  Array antenna scanning results

    图  10  $ \varphi ={0}^{0} $时不同$ \theta $的轴比仿真曲线

    Figure  10.  Simulated axial ratio versus elevation angle $ \theta $ at $ \varphi ={0}^{0} $

    图  11  $ \varphi =90{^{\circ}} $时不同θ的轴比仿真曲线

    Figure  11.  Simulated axial ratio versus elevation angle $ \theta $ at $ \varphi =90{^{\circ}} $

    表  1  天线单元尺寸参数

    Table  1.   Dimension parameters of antenna (mm)

    L1 L2 LP Wp Wf Wh R
    25 17 8 4 0.4 1 11
    Rj1 Rj2 Rj3 Rj4 D1 D2 Dz
    0.2 0.9 1.1 1.5 0.6 0.8 1
    Pz H1 H2 H3
    1 1 3 1
    下载: 导出CSV

    表  2  不同天线单元和天线阵列结果比较

    Table  2.   Comparison of various antenna elements and arrays

    Ref. HPBW/(°) AR-BW $ \theta $/(°) size peak-gain scanning
    range/(°)
    AR over scan
    angle/dB
    gain loss over
    scan angle/dB
    [21] 80 NA 0.42λ0×0.42λ0×0.27λ0 ±56 ≤3.0 ≤3.9
    [22] 130 130 1.44λ0($ \phi $)×1.56λ0 ±60 ≤4.0 ≤3.0
    [23] 100 176 0.37λ0×0.37λ0×NA ±42 ≤2.8 ≤3.0
    [24] 90 NA 0.32λ0×0.32λ0×0.19λ0 ±60 ≤7.0 ≤4.5
    [25] 136 132 NA×NA×0.09λ0 ±65 ≤3.0 ≤3.2
    this work 120 175 0.38λ0×0.38λ0×0.07λ0 ±60 ≤1.9 ≤3.3
    下载: 导出CSV
  • [1] Kodheli O, Lagunas E, Maturo N, et al. Satellite communications in the new space era: a survey and future challenges[J]. IEEE Communications Surveys & Tutorials, 2021, 23(1): 70-109. doi: 10.1109/COMST.2020.3028247
    [2] Beyaz M. Satellite communications with 5G, B5G, and 6G: challenges and prospects[J]. International Journal of Communications, Network and System Sciences, 2024, 17(3): 31-49. doi: 10.4236/ijcns.2024.173003
    [3] Luo Xuewen, Chen H H, Guo Qing. LEO/VLEO satellite communications in 6G and beyond networks–technologies, applications, and challenges[J]. IEEE Network, 2024, 38(5): 273-285. doi: 10.1109/MNET.2024.3353806
    [4] 王孟, 鲁煜. 相控阵天线的基本原理及其典型星载应用[J]. 中国无线电, 2023(6): 59-62

    Wang Meng, Lu Yu. The basic principle of phased array antenna and its typical satellite borne applications[J]. China Radio, 2023(6): 59-62
    [5] Hansen R C. Phased array antennas[M]. 2nd ed. Hoboken: John Wiley & Sons, 2009.
    [6] Zou Wenman, Qu Shiwei, Yang Shiwen. Wideband wide-scanning phased array in triangular lattice with electromagnetic bandgap structures[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(3): 422-426. doi: 10.1109/LAWP.2019.2893174
    [7] Gu Li, Zhao Yanwen, Cai Qiangming, et al. Scanning enhanced low-profile broadband phased array with radiator-sharing approach and defected ground structures[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(11): 5846-5854. doi: 10.1109/TAP.2017.2754321
    [8] Ren Quanxin, Qian Bingyi, Chen Xiaoming, et al. Linear antenna array with large element spacing for wide-angle beam scanning with suppressed grating lobes[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 21(6): 1258-1262. doi: 10.1109/LAWP.2022.3163603
    [9] Ding Ziheng, Chen Jingfeng, Liu Han, et al. Grating lobe suppression of sparse phased array by null scanning antenna[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(1): 317-329. doi: 10.1109/TAP.2021.3090573
    [10] Li Ziwei, Cui Wenjie, Liu Ruipeng, et al. Investigation of leaky-wave antenna with stable wide beam-scanning characteristic[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(1): 240-249. doi: 10.1109/TAP.2021.3111486
    [11] Wang Henghui, Sun Sheng, Xue Xiaohan, et al. A periodic coplanar strips leaky-wave antenna with horizontal wide-angle beam scanning and stable radiation[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(10): 9861-9866. doi: 10.1109/TAP.2022.3177514
    [12] Yang Guangwei, Li Jianying, Wei Dujuan, et al. Study on wide-angle scanning linear phased array antenna[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(1): 450-455. doi: 10.1109/TAP.2017.2761999
    [13] Wen Yaqing, Gao S, Wang Bingzhong, et al. Dual-polarized and wide-angle scanning microstrip phased array[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(7): 3775-3780. doi: 10.1109/TAP.2018.2835521
    [14] Cheng Youfeng, Ding Xiao, Shao Wei, et al. 2-D planar wide-angle scanning-phased array based on wide-beam elements[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 876-879. doi: 10.1109/LAWP.2016.2613130
    [15] Wen Yaqing, Wang Bingzhong, Ding Xiao. Wide-beam circularly polarized microstrip magnetic-electric dipole antenna for wide-angle scanning phased array[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 428-431. doi: 10.1109/LAWP.2016.2582258
    [16] Yang Mengting, Chen Qian, Zhou Xiangyu, et al. A wideband cross-dipole circularly polarized phased array antenna[C]//2024 IEEE 7th International Conference on Electronic Information and Communication Technology (ICEICT). 2024: 870-872.
    [17] Zhao Mingyang, Lei Xue, Zhu Yijun, et al. A wide-angle beam scanning circularly polarized, tightly coupled dipole array based on two-layer parasitic ring structure elements[J]. IET Microwaves, Antennas & Propagation, 2022, 16(12): 752-762.
    [18] Zeng Yu, Ding Xiao, Wang Yang. A single layer low axial ratio circularly polarized planar wide-angle scanning phased array[J]. AEU - International Journal of Electronics and Communications, 2024, 186: 155498. doi: 10.1016/j.aeue.2024.155498
    [19] 王建, 郑一农, 何子远. 陈列天线理论与工程应用[M]. 北京: 电子工业出版社, 2015

    Wang Jian, Zheng Yinong, He Ziyuan. Antenna array theory and engineering applications[M]. Beijing: Publishing House of Electronics Industry, 2015
    [20] 王友保, 史超, 林海. 解耦合的紧凑微带天线阵设计[J]. 中国电子科学研究院学报, 2014, 9(2): 204-208 doi: 10.3969/j.issn.1673-5692.2014.02.017

    Wang Youbao, Shi Chao, Lin Hai. Decoupling compacted microstrip antenna array design[J]. Journal of China Academy of Electronics and Information Technology, 2014, 9(2): 204-208 doi: 10.3969/j.issn.1673-5692.2014.02.017
    [21] Lei Haoyu, Liu Ying, Jia Yongtao, et al. A low-profile 2-D beam-scanning circularly polarized antenna combining reflectarray and transmitarray[J]. IEEE Antennas and Wireless Propagation Letters, 2024, 23(12): 4558-4562. doi: 10.1109/LAWP.2024.3456814
    [22] Xia Liangxin, Liu Nengwu, Zhu Lei, et al. Dual-CP antenna with wide-HPBW and wide-ARBW performance for wide-angle scanning phased array[J]. IEEE Transactions on Antennas and Propagation, 2024, 72(5): 4583-4588. doi: 10.1109/TAP.2024.3373064
    [23] Zhang Yingsong, Hong Wei, Ding Zhidan, et al. Circularly polarized metasurface phased array antenna system with wide axial-ratio beamwidth for LEO mobile satellite communication[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(6): 4823-4833. doi: 10.1109/TAP.2023.3265312
    [24] Luo Xuan, Ouyang Jun, Chen Zhihui, et al. A scalable Ka-band 1024-element transmit dual-circularly-polarized planar phased array for SATCOM application[J]. IEEE Access, 2020, 8: 156084-156095. doi: 10.1109/ACCESS.2020.3019174
    [25] Xie Yongchao, He Lianxing. Wide-angle scanning circular polarization phased array based on polarization rotation technology[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2019, 29: e21654. doi: 10.1002/mmce.21654
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  8
  • HTML全文浏览量:  5
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-12
  • 修回日期:  2025-12-31
  • 录用日期:  2025-12-16
  • 网络出版日期:  2026-01-21

目录

    /

    返回文章
    返回