Dual-channel high-order mode PCF sensor based on surface plasmon resonance for refractive index and temperature detection
-
摘要: 提出一种基于表面等离子体共振(SPR)效应的锚形双通道光子晶体光纤(PCF)传感器,用于实现温度与折射率(RI)的超宽范围同步检测。该传感器具有非对称锚型横截面结构,纤芯表面沿正交方向抛光为半圆形,并选择性镀覆金属金(Au)和聚二甲基硅氧烷(polydimethylsiloxane PDMS)薄膜,实现了极化分辨的SPR激发机制。该设计可分别激励高阶x极化与y极化模式,形成两个独立通道,实现多参数同时检测。其中,x极化通道通过Au/PDMS复合膜同时响应RI与温度变化,y极化通道则依靠Au膜单独实现RI检测。基于COMSOL Multiphysics软件对结构参数进行了全面优化,确保两个通道均具备强耦合强度、良好模式约束及高效高阶模激励能力。仿真结果表明,所设计的传感器在宽折射率检测范围1.21~1.44内表现出14 500 nm的最大折射率灵敏度,在宽温度变化范围−100 ℃至100 ℃内实现了最高4 nm/℃的温度灵敏度。该传感器结构新颖、灵敏度高、选择性强,具备在复杂生物和化学环境中开展癌细胞实时检测、生化分析及多参数同步监测等实际应用的广阔前景。Abstract:
Background Simultaneous and accurate detection of multiple physical and biochemical parameters, such as refractive index (RI) and temperature, is critically important in complex sensing environments including biological analysis and cancer cell detection. Photonic crystal fiber sensors based on surface plasmon resonance (PCF-SPR) have attracted considerable attention due to their high sensitivity and compact structure. However, achieving ultra-wide RI detection ranges, effective temperature compensation, and low cross-sensitivity within a single fiber platform remains a significant challenge, particularly when higher-order mode excitation and polarization selectivity are required.Purpose The purpose of this study is to propose and numerically investigate a dual-channel PCF-SPR sensor capable of simultaneous RI and temperature sensing over an ultra-wide range, while achieving polarization-resolved mode excitation and reduced cross-interference between sensing channels.Methods An anchor-shaped asymmetric photonic crystal fiber with orthogonally polished semi-circular surfaces is designed. Gold (Au) and polydimethylsiloxane (PDMS) thin films are selectively deposited on different polished surfaces to construct two independent SPR sensing channels. Polarization-resolved excitation of high-order modes is realized by structural asymmetry and selective coating. A full-vector finite-element method based on COMSOL Multiphysics is employed to analyze mode distributions, loss spectra, and resonance wavelength shifts. Key structural parameters, including air-hole geometry and metal-dielectric layer thicknesses, are systematically optimized to enhance plasmonic coupling strength and mode confinement.Results Simulation results indicate that the x-polarized channel coated with Au and PDMS exhibits dual sensitivity to RI and temperature, whereas the y-polarized channel coated only with Au responds exclusively to RI variations of another analyte. The proposed sensor achieves an ultra-wide RI detection range from 1.21 to 1.44, with a maximum RI sensitivity of 14 500 nm/RIU. The temperature sensing range spans from −100 ℃ to 100 ℃, and a peak temperature sensitivity of 4 nm/℃ is obtained. Clear polarization-dependent resonance characteristics and effective channel decoupling are demonstrated.Conclusions The proposed dual-channel anchor-shaped PCF-SPR sensor combines ultra-wide RI detection, temperature sensing capability, and polarization-resolved selectivity within a compact fiber structure. Its high sensitivity, flexible channel configuration, and strong resistance to cross-interference make it a promising platform for real-time multi-parameter sensing in complex biological and chemical applications, such as cancer cell detection and biochemical analysis. -
表 1 所设计的传感器的最佳参数
Table 1. Optimal parameters of the proposed sensor
D/μm H/μm tg1/nm tg2/nm tpdms/nm 14.5 16.5 35 35 300 表 2 同类型PCF传感器的传感能力对比
Table 2. Comparison of sensing capabilities among PCF sensors of the same type
Ref. direction of
polarizationoperating
wavelength/nmRI detection
rangewavelength
sensitivity/nmdetection
range/℃temperature
sensitivity/(nm/℃)Ref [17] x-polarized 1700 ~2250 1.29~1.35 7 800 − − y-polarized 600~950 1.37~1.41 11 700 − − Ref [40] x-polarized 500~ 1400 1.35~1.40 10 000 − − Ref [41] y-polarized 400~ 1000 1.333~1.42 6 549.93 − − Ref [42] y-polarized 660~800 1..39~1.44 2 000 − − Ref [43] y-polarized 500~1900 1.21~1.41 61 000 − − Ref [44] y-polarized 420~950 1.29~1.40 2 500 − − Ref [45] y-polarized 800~ 2300 ~ − 20~320 3.9 Ref [46] x-polarized 800~ 1200 ~ − −25~90 2.74 y-polarized 840~ 1000 ~ − 80~130 1.04 this work x-polarized 725~ 1200 1.21~1.44 14 500 −100~100 4 y-polarized 480~ 1300 1.21~1.44 14 500 − − -
[1] Mumtaz F, Zhang Bohong, Roman M, et al. Computational study: windmill-shaped multi-channel SPR sensor for simultaneous detection of multi-analyte[J]. Measurement, 2023, 207: 112386. doi: 10.1016/j.measurement.2022.112386 [2] Ravindran N, Kumar S, M Y, et al. Recent advances in Surface Plasmon Resonance (SPR) biosensors for food analysis: a review[J]. Critical Reviews in Food Science and Nutrition, 2023, 63(8): 1055-1077. doi: 10.1080/10408398.2021.1958745 [3] Zhou Yifan, Zhang Yanan, Han Bo, et al. Biochemical sensor based on functional material assisted optical fiber surface plasmon resonance: a review[J]. Measurement, 2023, 207: 112353. doi: 10.1016/j.measurement.2022.112353 [4] Xu Yanpei, Wu Haoyu, Sun Meng, et al. A sensitivity-enhanced plasmonic sensing platform modified with Co(OH)2 nanosheets[J]. Biosensors and Bioelectronics, 2024, 255: 116206. doi: 10.1016/j.bios.2024.116206 [5] Singh S, Chaudhary B, Upadhyay A, et al. A review on various sensing prospects of SPR based photonic crystal fibers[J]. Photonics and Nanostructures - Fundamentals and Applications, 2023, 54: 101119. doi: 10.1016/j.photonics.2023.101119 [6] Chaudhary V S, Kumar D, Pandey B P, et al. Advances in photonic crystal fiber-based sensor for detection of physical and biochemical parameters—a review[J]. IEEE Sensors Journal, 2023, 23(2): 1012-1023. doi: 10.1109/JSEN.2022.3222969 [7] Sawraj S, Kumar D, Pravesh R, et al. PCF-based sensors for biomedical applications: a review[J]. IEEE Transactions on NanoBioscience, 2025, 24(2): 157-164. doi: 10.1109/TNB.2024.3462748 [8] Butt M A, Khonina S N, Kazanskiy N L. Plasmonics: a necessity in the field of sensing-a review (invited)[J]. Fiber and Integrated Optics, 2021, 40(1): 14-47. doi: 10.1080/01468030.2021.1902590 [9] Rahman M A, Ahmed T, Anower M S. A highly sensitive dual-slotted channel-based sensor coated with gold and titanium dioxide for simultaneous detection of two distinct analytes[J]. Plasmonics, 2024, 20(6): 4115-4129. doi: 10.1007/s11468-024-02615-8 [10] Kamrunnahar Q M, Haider F, Aoni R A, et al. Plasmonic micro-channel assisted photonic crystal fiber based highly sensitive sensor for multi-analyte detection[J]. Nanomaterials, 2022, 12: 1444. doi: 10.3390/nano12091444 [11] Manickam P, Senthil R, Senthil R. Numerical analysis of hybrid - SPR-PCF multi-analyte sensor for clinical diagnosis[J]. Plasmonics, 2024, 20(6): 3305-3311. doi: 10.1007/s11468-024-02486-z [12] Wang Fengmin, Wei Yong, Han Yanhong. High-sensitivity refractive index sensor with dual-channel based on surface plasmon resonance photonic crystal fiber[J]. Sensors, 2024, 24: 5050. doi: 10.3390/s24155050 [13] Rahman K M M, Alam M S, Islam M A. Highly sensitive surface plasmon resonance refractive index multi-channel sensor for multi-analyte sensing[J]. IEEE Sensors Journal, 2021, 21(24): 27422-27432. doi: 10.1109/JSEN.2021.3126624 [14] Hasan M S, Kalam M A E, Faisal M. PCF based four-channel SPR biosensor with wide sensing range[J]. IEEE Transactions on NanoBioscience, 2024, 23(2): 233-241. doi: 10.1109/TNB.2023.3311611 [15] Wang Haoran, Rao Weiying, Luo Jian, et al. A dual-channel surface Plasmon resonance sensor based on dual-polarized photonic crystal fiber for ultra-wide range and high sensitivity of refractive index detection[J]. IEEE Photonics Journal, 2021, 13: 6800611. doi: 10.1109/jphot.2021.3054726 [16] Shakya A K, Singh S. Design of dual polarized tetra core PCF based plasmonic RI sensor for visible-IR spectrum[J]. Optics Communications, 2021, 478: 126372. doi: 10.1016/j.optcom.2020.126372 [17] Zhang Shuaishuai, Wang Yueke. A PCF-SPR sensor for dual-polarization and wide refractive index detection range[J]. Optics Communications, 2024, 569: 130810. doi: 10.1016/j.optcom.2024.130810 [18] Jiao Shengxi, Gao Zhenqiu. Analysis of a photonic crystal fiber SPR sensor based on dual polarization direction and two different metal layers[J]. Optical Materials Express, 2025, 15(3): 541-554. doi: 10.1364/OME.554436 [19] Guo Xiaotong, Sang Tian, Yang Guofeng, et al. Dual-polarization SPR sensor of U-shaped photonic crystal fiber coated with Au-TiO2[J]. Plasmonics, 2025, 20(5): 2665-2674. doi: 10.1007/s11468-024-02501-3 [20] Aishy T R, Jahirul Islam M, Kaysir M R. Multiple gas detection using multi-channel SPR based PCF with compound film-coated side-holes[J]. Plasmonics, 2025, 20(9): 8039-8048. doi: 10.1007/s11468-025-02772-4 [21] Alshaikhli Z S, Mahdi M T. Numerical analysis of high sensitivity refractive index sensor based on quad-core PCF-SPR[J]. Plasmonics, 2024, 20(7): 4553-4564. doi: 10.1007/s11468-024-02651-4 [22] Xiao Yi, Jiang Zhuxuan, Yin Bin, et al. Simultaneous measurement of hydrogen and methane concentrations with temperature self-calibration based on a SPR sensor with an anchor-shaped photonic crystal fiber[J]. Optics & Laser Technology, 2024, 175: 110880. doi: 10.1016/j.optlastec.2024.110880 [23] Chen Longqin, Wu Yongchang, Liu Yue, et al. Highly sensitive dual-function sensor for refractive index and temperature using D-shaped microchannel photonic crystal fiber[J]. Optics Express, 2024, 32(7): 12405-12418. doi: 10.1364/OE.519749 [24] Trisha I J, Patwary A K, Sayem M A, et al. Numerical analysis of a single channel exposed core elliptical shaped PCF based highly sensitive SPR sensor for wide RI sensing[J]. Optics Express, 2024, 32(14): 25472-25487. doi: 10.1364/OE.530030 [25] Zhu Qixin, Shi Jianhong, Hu Huixuan, et al. High-power polarization-maintaining LP11-mode fiber laser based on long-period fiber grating for precise welding[J]. Optics Express, 2024, 32(6): 8862-8876. doi: 10.1364/OE.516635 [26] Ahmad H, Nizamani B, Bencheikh A. LP11 mode all-fiber ultrafast laser at 1.3 μm by using bismuth telluride as an optical modulator[J]. IEEE Journal of Quantum Electronics, 2025, 61: 1600509. doi: 10.1109/jqe.2025.3560528 [27] Zhang Li’ang, Li Kewei, Ren Wenhua, et al. Multi-wavelength erbium-doped fiber laser with high-purity LP11 mode output based on mechanically induced long-period fiber gratings and double Sagnac fiber filter[J]. Optics Communications, 2025, 577: 131368. doi: 10.1016/j.optcom.2024.131368 [28] Ding Xin, Lin Qiao, Wang Mengjie, et al. Design and simulation of high-performance D-type dual-mode PCF-SPR refractive index sensor coated with Au-TiO2 layer[J]. Sensors, 2024, 24: 6118. doi: 10.3390/s24186118 [29] Zhou Deyang, Ren Fang, Li Yidan, et al. Enhanced surface Plasmon resonance sensing via higher-order mode in weakly-coupled few-mode photonic crystal fiber[J]. Plasmonics, 2024, 20(6): 3493-3504. doi: 10.1007/s11468-024-02446-7 [30] Ullah S, Chen Hailiang, Guo Pengxiao, et al. A highly sensitive D-shaped PCF-SPR sensor for refractive index and temperature detection[J]. Sensors, 2024, 24: 5582. doi: 10.3390/s24175582 [31] Li Kaifeng, Li Shuguang, Guo Pengxiao, et al. Dual parameter sensor for RI and temperature detection by cascading Ag/WO3 film PCF and Ag/MoS2/PDMS film PCF[J]. Optics Express, 2024, 32(16): 27710-27722. doi: 10.1364/OE.525529 [32] Ji Xuhao, Zhang Yu, Qin Yifan, et al. Dual-channel SPR temperature sensor based on side-polished hollow core fiber and PDMS[J]. Journal of Lightwave Technology, 2025, 43(6): 2949-2955. doi: 10.1109/JLT.2024.3498347 [33] Liu Ting, Lin Zhipeng, Lai Changfei, et al. High-sensitivity optical fiber SPR temperature sensing probe based on Au-PDMS@Au coating[J]. Optical Fiber Technology, 2024, 84: 103733. doi: 10.1016/j.yofte.2024.103733 [34] Fleming J W. Dispersion in GeO2–SiO2 glasses[J]. Applied Optics, 1984, 23(24): 4486-4493. [35] Kamrunnahar Q M, Mou J R, Momtaj M. Dual-core gold coated photonic crystal fiber plasmonic sensor: design and analysis[J]. Results in Physics, 2020, 18: 103319. doi: 10.1016/j.rinp.2020.103319 [36] Zhu Zongda, Liu Lu, Liu Zhihai, et al. Surface-plasmon-resonance-based optical-fiber temperature sensor with high sensitivity and high figure of merit[J]. Optics Letters, 2017, 42(15): 2948-2951. doi: 10.1364/OL.42.002948 [37] Mahfuz M A, Hossain M A, Haque E, et al. Dual-core photonic crystal fiber-based plasmonic RI sensor in the visible to near-IR operating band[J]. IEEE Sensors Journal, 2020, 20(14): 7692-7700. doi: 10.1109/JSEN.2020.2980327 [38] Singh S, Kumar D, Sahu A, et al. Photonic crystal fiber-based sensors for various cancer detection in human body: a review[J]. IEEE Sensors Journal, 2025, 25(4): 5956-5968. doi: 10.1109/JSEN.2024.3524325 [39] Aruna Gandhi M S, Senthilnathan K, Ramesh Babu P, et al. Highly sensitive localized surface Plasmon Polariton based D-type twin-hole photonic crystal fiber microbiosensor: enhanced scheme for SERS reinforcement[J]. Sensors, 2020, 20: 5248. doi: 10.3390/s20185248 [40] Jain S, Choudhary K, Kumar S. Photonic crystal fiber-based SPR sensor for broad range of refractive index sensing applications[J]. Optical Fiber Technology, 2022, 73: 103030. doi: 10.1016/j.yofte.2022.103030 [41] Zhang Zhibing, Yin Zhiyong, Li Shuguang. A SPR sensor with wide RI measuring range and narrow FWHM based on PCF-silver film structure[J]. Journal of Lightwave Technology, 2024, 42(20): 7398-7404. doi: 10.1109/JLT.2024.3419120 [42] Mittal S, Saharia A, Ismail Y, et al. Design and performance analysis of a novel hoop-cut SPR-PCF sensor for high sensitivity and broad range sensing applications[J]. IEEE Sensors Journal, 2024, 24(3): 2697-2704. doi: 10.1109/JSEN.2023.3339813 [43] Khodatars Dashtmian M R, Fallahi V, Olyaee S, et al. Highly sensitive dual-side polished SPR PCF sensor for ultra-wide analyte range in the visible to near-IR operating band[J]. Optical and Quantum Electronics, 2024, 56: 1187. doi: 10.1007/s11082-024-07146-4 [44] Hoque A M T, Al-Tabatabaie K F, Ali M E, et al. U-grooved selectively coated and highly sensitive PCF-SPR sensor for broad range analyte RI detection[J]. IEEE Access, 2023, 11: 74486-74499. doi: 10.1109/ACCESS.2023.3261565 [45] Yang Lin, Hu Chunjie, Zhao Yuyang, et al. SPR-based PCF sensor with embedded silver wires for wide range temperature sensing[J]. Journal of Optics, 2023, 52(3): 1197-1205. doi: 10.1007/s12596-022-00937-6 [46] You Qingcheng, Pan Honggang, Zhao Zihong, et al. Highly sensitive wide detection range semicircular convex slot PCF temperature sensor based on surface Plasmon resonance[J]. IEEE Sensors Journal, 2024, 24(16): 25785-25792. doi: 10.1109/JSEN.2024.3422688 -
下载: