留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SPR的可同时检测超宽范围折射率和温度的锚型双通道高阶模式PCF传感器设计

李新宇 毛一民 张兆 徐晴 卢翔 任芳

李新宇, 毛一民, 张兆, 等. 基于SPR的可同时检测超宽范围折射率和温度的锚型双通道高阶模式PCF传感器设计[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250301
引用本文: 李新宇, 毛一民, 张兆, 等. 基于SPR的可同时检测超宽范围折射率和温度的锚型双通道高阶模式PCF传感器设计[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250301
Li Xinyu, Mao Yimin, Zhang Zhao, et al. Dual-channel high-order mode PCF sensor based on surface plasmon resonance for refractive index and temperature detection[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250301
Citation: Li Xinyu, Mao Yimin, Zhang Zhao, et al. Dual-channel high-order mode PCF sensor based on surface plasmon resonance for refractive index and temperature detection[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250301

基于SPR的可同时检测超宽范围折射率和温度的锚型双通道高阶模式PCF传感器设计

doi: 10.11884/HPLPB202638.250301
基金项目: 中央高校基本科研业务费(FRF-TP-19-016A2)
详细信息
    作者简介:

    李新宇,lixinyu@ustb.edu.cn

    通讯作者:

    任 芳,renfang@ustb.edu.cn

  • 中图分类号: TN253

Dual-channel high-order mode PCF sensor based on surface plasmon resonance for refractive index and temperature detection

  • 摘要: 提出一种基于表面等离子体共振(SPR)效应的锚形双通道光子晶体光纤(PCF)传感器,用于实现温度与折射率(RI)的超宽范围同步检测。该传感器具有非对称锚型横截面结构,纤芯表面沿正交方向抛光为半圆形,并选择性镀覆金属金(Au)和聚二甲基硅氧烷(polydimethylsiloxane PDMS)薄膜,实现了极化分辨的SPR激发机制。该设计可分别激励高阶x极化与y极化模式,形成两个独立通道,实现多参数同时检测。其中,x极化通道通过Au/PDMS复合膜同时响应RI与温度变化,y极化通道则依靠Au膜单独实现RI检测。基于COMSOL Multiphysics软件对结构参数进行了全面优化,确保两个通道均具备强耦合强度、良好模式约束及高效高阶模激励能力。仿真结果表明,所设计的传感器在宽折射率检测范围1.21~1.44内表现出14 500 nm的最大折射率灵敏度,在宽温度变化范围−100 ℃至100 ℃内实现了最高4 nm/℃的温度灵敏度。该传感器结构新颖、灵敏度高、选择性强,具备在复杂生物和化学环境中开展癌细胞实时检测、生化分析及多参数同步监测等实际应用的广阔前景。
  • 图  1  设计的锚型双通道PCF-SPR传感器的横截面示意图

    Figure  1.  Cross section of the designed anchor-shaped dual-channel PCF-SPR sensor

    图  2  不同偏振条件下的色散特性

    Figure  2.  Dispersion characteristics under different polarization conditions

    图  3  不同大空气孔直径D下的偏振损耗特性

    Figure  3.  Polarization-dependent loss characteristics under different large air hole diameters D

    图  4  不同抛光深度H下的偏振损耗特性

    Figure  4.  Polarization-dependent loss characteristics under different polishing depths H

    图  5  不同金层厚度tg1下的x偏振损耗特性

    Figure  5.  x-polarized loss characteristics under different gold layer thicknesses tg1

    图  6  不同金层厚度tg2下的y偏振损耗特性

    Figure  6.  y-polarized loss characteristics under different gold layer thicknesses tg2

    图  7  不同PDMS层厚度tpdms下的x偏振损耗特性

    Figure  7.  x-polarized loss characteristics under different PDMS layer thicknesses tpdms

    图  8  x偏振通道分析物折射率响应特性

    Figure  8.  Refractive index response characteristics of the x-polarized channel analyte

    图  9  y偏振通道分析物折射率响应特性

    Figure  9.  Refractive index response characteristics of the y-polarized channel analyte

    图  10  x偏振通道分析物温度响应特性

    Figure  10.  Temperature response characteristics of the x-polarized channel analyte

    表  1  所设计的传感器的最佳参数

    Table  1.   Optimal parameters of the proposed sensor

    D/μmH/μmtg1/nmtg2/nmtpdms/nm
    14.516.53535300
    下载: 导出CSV

    表  2  同类型PCF传感器的传感能力对比

    Table  2.   Comparison of sensing capabilities among PCF sensors of the same type

    Ref. direction of
    polarization
    operating
    wavelength/nm
    RI detection
    range
    wavelength
    sensitivity/nm
    detection
    range/℃
    temperature
    sensitivity/(nm/℃)
    Ref [17] x-polarized 17002250 1.29~1.35 7 800
    y-polarized 600~950 1.37~1.41 11 700
    Ref [40] x-polarized 500~1400 1.35~1.40 10 000
    Ref [41] y-polarized 400~1000 1.333~1.42 6 549.93
    Ref [42] y-polarized 660~800 1..39~1.44 2 000
    Ref [43] y-polarized 500~1900 1.21~1.41 61 000
    Ref [44] y-polarized 420~950 1.29~1.40 2 500
    Ref [45] y-polarized 800~2300 20~320 3.9
    Ref [46] x-polarized 800~1200 −25~90 2.74
    y-polarized 840~1000 80~130 1.04
    this work x-polarized 725~1200 1.21~1.44 14 500 −100~100 4
    y-polarized 480~1300 1.21~1.44 14 500
    下载: 导出CSV
  • [1] Mumtaz F, Zhang Bohong, Roman M, et al. Computational study: windmill-shaped multi-channel SPR sensor for simultaneous detection of multi-analyte[J]. Measurement, 2023, 207: 112386. doi: 10.1016/j.measurement.2022.112386
    [2] Ravindran N, Kumar S, M Y, et al. Recent advances in Surface Plasmon Resonance (SPR) biosensors for food analysis: a review[J]. Critical Reviews in Food Science and Nutrition, 2023, 63(8): 1055-1077. doi: 10.1080/10408398.2021.1958745
    [3] Zhou Yifan, Zhang Yanan, Han Bo, et al. Biochemical sensor based on functional material assisted optical fiber surface plasmon resonance: a review[J]. Measurement, 2023, 207: 112353. doi: 10.1016/j.measurement.2022.112353
    [4] Xu Yanpei, Wu Haoyu, Sun Meng, et al. A sensitivity-enhanced plasmonic sensing platform modified with Co(OH)2 nanosheets[J]. Biosensors and Bioelectronics, 2024, 255: 116206. doi: 10.1016/j.bios.2024.116206
    [5] Singh S, Chaudhary B, Upadhyay A, et al. A review on various sensing prospects of SPR based photonic crystal fibers[J]. Photonics and Nanostructures - Fundamentals and Applications, 2023, 54: 101119. doi: 10.1016/j.photonics.2023.101119
    [6] Chaudhary V S, Kumar D, Pandey B P, et al. Advances in photonic crystal fiber-based sensor for detection of physical and biochemical parameters—a review[J]. IEEE Sensors Journal, 2023, 23(2): 1012-1023. doi: 10.1109/JSEN.2022.3222969
    [7] Sawraj S, Kumar D, Pravesh R, et al. PCF-based sensors for biomedical applications: a review[J]. IEEE Transactions on NanoBioscience, 2025, 24(2): 157-164. doi: 10.1109/TNB.2024.3462748
    [8] Butt M A, Khonina S N, Kazanskiy N L. Plasmonics: a necessity in the field of sensing-a review (invited)[J]. Fiber and Integrated Optics, 2021, 40(1): 14-47. doi: 10.1080/01468030.2021.1902590
    [9] Rahman M A, Ahmed T, Anower M S. A highly sensitive dual-slotted channel-based sensor coated with gold and titanium dioxide for simultaneous detection of two distinct analytes[J]. Plasmonics, 2024, 20(6): 4115-4129. doi: 10.1007/s11468-024-02615-8
    [10] Kamrunnahar Q M, Haider F, Aoni R A, et al. Plasmonic micro-channel assisted photonic crystal fiber based highly sensitive sensor for multi-analyte detection[J]. Nanomaterials, 2022, 12: 1444. doi: 10.3390/nano12091444
    [11] Manickam P, Senthil R, Senthil R. Numerical analysis of hybrid - SPR-PCF multi-analyte sensor for clinical diagnosis[J]. Plasmonics, 2024, 20(6): 3305-3311. doi: 10.1007/s11468-024-02486-z
    [12] Wang Fengmin, Wei Yong, Han Yanhong. High-sensitivity refractive index sensor with dual-channel based on surface plasmon resonance photonic crystal fiber[J]. Sensors, 2024, 24: 5050. doi: 10.3390/s24155050
    [13] Rahman K M M, Alam M S, Islam M A. Highly sensitive surface plasmon resonance refractive index multi-channel sensor for multi-analyte sensing[J]. IEEE Sensors Journal, 2021, 21(24): 27422-27432. doi: 10.1109/JSEN.2021.3126624
    [14] Hasan M S, Kalam M A E, Faisal M. PCF based four-channel SPR biosensor with wide sensing range[J]. IEEE Transactions on NanoBioscience, 2024, 23(2): 233-241. doi: 10.1109/TNB.2023.3311611
    [15] Wang Haoran, Rao Weiying, Luo Jian, et al. A dual-channel surface Plasmon resonance sensor based on dual-polarized photonic crystal fiber for ultra-wide range and high sensitivity of refractive index detection[J]. IEEE Photonics Journal, 2021, 13: 6800611. doi: 10.1109/jphot.2021.3054726
    [16] Shakya A K, Singh S. Design of dual polarized tetra core PCF based plasmonic RI sensor for visible-IR spectrum[J]. Optics Communications, 2021, 478: 126372. doi: 10.1016/j.optcom.2020.126372
    [17] Zhang Shuaishuai, Wang Yueke. A PCF-SPR sensor for dual-polarization and wide refractive index detection range[J]. Optics Communications, 2024, 569: 130810. doi: 10.1016/j.optcom.2024.130810
    [18] Jiao Shengxi, Gao Zhenqiu. Analysis of a photonic crystal fiber SPR sensor based on dual polarization direction and two different metal layers[J]. Optical Materials Express, 2025, 15(3): 541-554. doi: 10.1364/OME.554436
    [19] Guo Xiaotong, Sang Tian, Yang Guofeng, et al. Dual-polarization SPR sensor of U-shaped photonic crystal fiber coated with Au-TiO2[J]. Plasmonics, 2025, 20(5): 2665-2674. doi: 10.1007/s11468-024-02501-3
    [20] Aishy T R, Jahirul Islam M, Kaysir M R. Multiple gas detection using multi-channel SPR based PCF with compound film-coated side-holes[J]. Plasmonics, 2025, 20(9): 8039-8048. doi: 10.1007/s11468-025-02772-4
    [21] Alshaikhli Z S, Mahdi M T. Numerical analysis of high sensitivity refractive index sensor based on quad-core PCF-SPR[J]. Plasmonics, 2024, 20(7): 4553-4564. doi: 10.1007/s11468-024-02651-4
    [22] Xiao Yi, Jiang Zhuxuan, Yin Bin, et al. Simultaneous measurement of hydrogen and methane concentrations with temperature self-calibration based on a SPR sensor with an anchor-shaped photonic crystal fiber[J]. Optics & Laser Technology, 2024, 175: 110880. doi: 10.1016/j.optlastec.2024.110880
    [23] Chen Longqin, Wu Yongchang, Liu Yue, et al. Highly sensitive dual-function sensor for refractive index and temperature using D-shaped microchannel photonic crystal fiber[J]. Optics Express, 2024, 32(7): 12405-12418. doi: 10.1364/OE.519749
    [24] Trisha I J, Patwary A K, Sayem M A, et al. Numerical analysis of a single channel exposed core elliptical shaped PCF based highly sensitive SPR sensor for wide RI sensing[J]. Optics Express, 2024, 32(14): 25472-25487. doi: 10.1364/OE.530030
    [25] Zhu Qixin, Shi Jianhong, Hu Huixuan, et al. High-power polarization-maintaining LP11-mode fiber laser based on long-period fiber grating for precise welding[J]. Optics Express, 2024, 32(6): 8862-8876. doi: 10.1364/OE.516635
    [26] Ahmad H, Nizamani B, Bencheikh A. LP11 mode all-fiber ultrafast laser at 1.3 μm by using bismuth telluride as an optical modulator[J]. IEEE Journal of Quantum Electronics, 2025, 61: 1600509. doi: 10.1109/jqe.2025.3560528
    [27] Zhang Li’ang, Li Kewei, Ren Wenhua, et al. Multi-wavelength erbium-doped fiber laser with high-purity LP11 mode output based on mechanically induced long-period fiber gratings and double Sagnac fiber filter[J]. Optics Communications, 2025, 577: 131368. doi: 10.1016/j.optcom.2024.131368
    [28] Ding Xin, Lin Qiao, Wang Mengjie, et al. Design and simulation of high-performance D-type dual-mode PCF-SPR refractive index sensor coated with Au-TiO2 layer[J]. Sensors, 2024, 24: 6118. doi: 10.3390/s24186118
    [29] Zhou Deyang, Ren Fang, Li Yidan, et al. Enhanced surface Plasmon resonance sensing via higher-order mode in weakly-coupled few-mode photonic crystal fiber[J]. Plasmonics, 2024, 20(6): 3493-3504. doi: 10.1007/s11468-024-02446-7
    [30] Ullah S, Chen Hailiang, Guo Pengxiao, et al. A highly sensitive D-shaped PCF-SPR sensor for refractive index and temperature detection[J]. Sensors, 2024, 24: 5582. doi: 10.3390/s24175582
    [31] Li Kaifeng, Li Shuguang, Guo Pengxiao, et al. Dual parameter sensor for RI and temperature detection by cascading Ag/WO3 film PCF and Ag/MoS2/PDMS film PCF[J]. Optics Express, 2024, 32(16): 27710-27722. doi: 10.1364/OE.525529
    [32] Ji Xuhao, Zhang Yu, Qin Yifan, et al. Dual-channel SPR temperature sensor based on side-polished hollow core fiber and PDMS[J]. Journal of Lightwave Technology, 2025, 43(6): 2949-2955. doi: 10.1109/JLT.2024.3498347
    [33] Liu Ting, Lin Zhipeng, Lai Changfei, et al. High-sensitivity optical fiber SPR temperature sensing probe based on Au-PDMS@Au coating[J]. Optical Fiber Technology, 2024, 84: 103733. doi: 10.1016/j.yofte.2024.103733
    [34] Fleming J W. Dispersion in GeO2–SiO2 glasses[J]. Applied Optics, 1984, 23(24): 4486-4493.
    [35] Kamrunnahar Q M, Mou J R, Momtaj M. Dual-core gold coated photonic crystal fiber plasmonic sensor: design and analysis[J]. Results in Physics, 2020, 18: 103319. doi: 10.1016/j.rinp.2020.103319
    [36] Zhu Zongda, Liu Lu, Liu Zhihai, et al. Surface-plasmon-resonance-based optical-fiber temperature sensor with high sensitivity and high figure of merit[J]. Optics Letters, 2017, 42(15): 2948-2951. doi: 10.1364/OL.42.002948
    [37] Mahfuz M A, Hossain M A, Haque E, et al. Dual-core photonic crystal fiber-based plasmonic RI sensor in the visible to near-IR operating band[J]. IEEE Sensors Journal, 2020, 20(14): 7692-7700. doi: 10.1109/JSEN.2020.2980327
    [38] Singh S, Kumar D, Sahu A, et al. Photonic crystal fiber-based sensors for various cancer detection in human body: a review[J]. IEEE Sensors Journal, 2025, 25(4): 5956-5968. doi: 10.1109/JSEN.2024.3524325
    [39] Aruna Gandhi M S, Senthilnathan K, Ramesh Babu P, et al. Highly sensitive localized surface Plasmon Polariton based D-type twin-hole photonic crystal fiber microbiosensor: enhanced scheme for SERS reinforcement[J]. Sensors, 2020, 20: 5248. doi: 10.3390/s20185248
    [40] Jain S, Choudhary K, Kumar S. Photonic crystal fiber-based SPR sensor for broad range of refractive index sensing applications[J]. Optical Fiber Technology, 2022, 73: 103030. doi: 10.1016/j.yofte.2022.103030
    [41] Zhang Zhibing, Yin Zhiyong, Li Shuguang. A SPR sensor with wide RI measuring range and narrow FWHM based on PCF-silver film structure[J]. Journal of Lightwave Technology, 2024, 42(20): 7398-7404. doi: 10.1109/JLT.2024.3419120
    [42] Mittal S, Saharia A, Ismail Y, et al. Design and performance analysis of a novel hoop-cut SPR-PCF sensor for high sensitivity and broad range sensing applications[J]. IEEE Sensors Journal, 2024, 24(3): 2697-2704. doi: 10.1109/JSEN.2023.3339813
    [43] Khodatars Dashtmian M R, Fallahi V, Olyaee S, et al. Highly sensitive dual-side polished SPR PCF sensor for ultra-wide analyte range in the visible to near-IR operating band[J]. Optical and Quantum Electronics, 2024, 56: 1187. doi: 10.1007/s11082-024-07146-4
    [44] Hoque A M T, Al-Tabatabaie K F, Ali M E, et al. U-grooved selectively coated and highly sensitive PCF-SPR sensor for broad range analyte RI detection[J]. IEEE Access, 2023, 11: 74486-74499. doi: 10.1109/ACCESS.2023.3261565
    [45] Yang Lin, Hu Chunjie, Zhao Yuyang, et al. SPR-based PCF sensor with embedded silver wires for wide range temperature sensing[J]. Journal of Optics, 2023, 52(3): 1197-1205. doi: 10.1007/s12596-022-00937-6
    [46] You Qingcheng, Pan Honggang, Zhao Zihong, et al. Highly sensitive wide detection range semicircular convex slot PCF temperature sensor based on surface Plasmon resonance[J]. IEEE Sensors Journal, 2024, 24(16): 25785-25792. doi: 10.1109/JSEN.2024.3422688
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  7
  • HTML全文浏览量:  3
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-17
  • 修回日期:  2025-12-11
  • 录用日期:  2026-01-06
  • 网络出版日期:  2026-02-13

目录

    /

    返回文章
    返回