Research progress on high-power fiber laser simulation software
-
摘要: 高功率光纤激光仿真技术可在研发阶段有效降低实验成本、缩短开发周期,并优化激光器性能参数,对推动高功率光纤激光器在工业加工、国防、科研、医疗设备等领域的应用具有重要意义。重点介绍了国内外典型高功率光纤激光器仿真软件的研究进展,研究了其功能特点、和应用场景等有关情况,总结了高功率光纤激光建模仿真的研究特点,对高功率光纤激光建模仿真软件如何有效验证和可靠应用进行了思考,并对高功率光纤激光仿真软件下一步的发展方向进行展望,可为相关行业仿真软件研发提供借鉴。Abstract:
Background High-power fiber lasers have become core devices in key fields such as industrial precision processing, advanced national defense equipment, frontier scientific research, and high-end medical equipment. However, the traditional R&D mode of high-power fiber lasers relies heavily on physical experiments, which are costly and time-consuming. Simulation technology, as an effective auxiliary tool, can significantly reduce experimental costs, shorten the development cycle, and accurately optimize key performance parameters, thus playing an irreplaceable role in promoting the practical application and technological innovation of high-power fiber lasers.Purpose This study aims to systematically sort out and summarize the research progress of typical high-power fiber laser simulation software, clarify the current research status of this field, and provide practical references for the R&D and application of related simulation software in the industry.Methods This paper focuses on investigating mainstream high-power fiber laser simulation software at home and abroad, conducts in-depth analysis and comparison of their core functional characteristics, technical advantages, and applicable scenarios, and combs the research ideas and technical routes of high-power fiber laser modeling and simulation.Results The study summarizes the main research features of high-power fiber laser modeling and simulation, discusses the key technical points in the effective verification and reliable application of simulation software, and clearly sorts out the latest research progress of typical simulation software.Conclusions This paper prospects the future development directions of high-power fiber laser simulation software, including the integration of multi-physics field simulation, high-precision model construction, artificial intelligence-enabled fiber laser design, as well as standardized interfaces and an open-source ecosystem. This study provides valuable theoretical and practical references for the R&D and upgrading of simulation software in related industries. -
表 1 光纤激光器仿真软件对比
Table 1. Comparison of software for fiber lasers
comparison dimension LAD RP fiber power Fiberdesk FLSS SeeFiber developer corporate (US: Liekki, later acquired by nLIGHT) corporate (Germany: RP Photonics) corporate (Germany) research institution (CAEP, China) research institution
(ISCAS/NUDT, China)release time/version released 2006, discontinued after
V4.0 (2008).V1 released no later than 2008, updated to V8 in 2023. V1.0 in 2006, V7.0 in 2025. released 2012. No reported subsequent updates. released 2017, updated to
V3.0 in 2024.pricing paid version paid version paid version no public release. free version & paid version. core technical principle rate equations rate equations, nonlinear Schrödinger equation (NLSE) nonlinear Schrödinger equation (NLSE) rate equations rate equations/coupled-mode equations, nonlinear Schrödinger equation (NLSE) functional
focushigh-power fiber laser/amplifier design & optimization full-scenario laser & photonics simulation (fiber lasers, resonators, pulses, etc.) linear/nonlinear pulse propagation in fibers high-power fiber laser simulation full-process simulation of continuous/pulsed fiber lasers and fiber photonic devices simulation capabilities supports CW lasers, MOPA systems covers CW, pulsed, mode-locked, Q-switched fiber laser design; Programming required for complex simulations simulates dispersion, SPM, Raman effect; focuses on pulse compression, supercontinuum adapts to high-power engineering needs; limited model coverage supports various laser structures, nonlinear effects, mode coupling, temperature field analysis operation mode graphical, no programming required built-in basic models, parametric configuration built-in basic models; parameterized configuration graphical & tabular interface; no programming required graphical & tabular interface; supports multi-parameter scanning output results ASE spectrum, nonlinear thresholds, fiber characteristics power evolution, spectral distribution, pulse chirp, resonator modes power evolution, pulse spatio-temporal spectrum, Raman response laser core performance parameters (detailed results not disclosed) multi-dimensional results including spectrum, power distribution, spot pattern, time domain, and temperature field advantages simple operation, user-friendly interface comprehensive functionality, adapts to diverse laser simulation scenarios high accuracy in pulse propagation; focuses
on nonlinear fieldsaligns with laser fusion needs; early domestic breakthrough completely independent intellectual property rights, relatively complete models, and strong visualization
of resultslimitations version discontinued, incompatible with Win7+; some models outdated less user-friendly interface; requires programming skills; difficult feature extension; some models lack richness. focuses on pulse domain; weak system-level simulation capability limited model coverage; no iteration; non-commercialized results low commercialization;
immature user ecosystem -
[1] Zervas M N, Codemard C A. High power fiber lasers: a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 219-241. doi: 10.1109/JSTQE.2014.2321279 [2] Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers[J]. Nature Photonics, 2013, 7(11): 861-867. doi: 10.1038/nphoton.2013.273 [3] 王小林, 曾令筏, 叶云, 等. LD泵浦新型高功率掺镱光纤激光器研究(特邀)[J]. 中国激光, 2024, 51: 1901013 doi: 10.3788/CJL240948Wang Xiaolin, Zeng Lingfa, Ye Yun, et al. Directly LD pumped novel high power ytterbium-doped fiber laser (invited)[J]. Chinese Journal of Lasers, 2024, 51: 1901013 doi: 10.3788/CJL240948 [4] 肖虎, 李瑞显, 吴函烁, 等. 高功率高光束质量级联泵浦掺镱光纤激光器研究进展[J]. 光学学报, 2023, 43: 1714009 doi: 10.3788/AOS230991Xiao Hu, Li Ruixian, Wu Hanshuo, et al. Research progress in tandem-pumped high-power and high-beam quality ytterbium-doped fiber laser[J]. Acta Optica Sinica, 2023, 43: 1714009 doi: 10.3788/AOS230991 [5] 周朴, 冷进勇, 肖虎, 等. 高平均功率光纤激光的研究进展与发展趋势[J]. 中国激光, 2021, 48: 2000001 doi: 10.3788/CJL202148.2000001Zhou Pu, Leng Jinyong, Xiao Hu, et al. High average power fiber lasers: research progress and future prospect[J]. Chinese Journal of Lasers, 2021, 48: 2000001 doi: 10.3788/CJL202148.2000001 [6] 周朴, 粟荣涛, 李灿, 等. 高功率光纤激光的光束合成: 进展、动向与展望(特邀)[J]. 中国激光, 2024, 51: 1901003 doi: 10.3788/CJL241121Zhou Pu, Su Rongtao, Li Can, et al. Beam combining of high power fiber lasers: progress, trend and prospects (invited)[J]. Chinese Journal of Lasers, 2024, 51: 1901003 doi: 10.3788/CJL241121 [7] 林傲祥, 彭昆, 俞娟, 等. 高功率连续光纤激光系统热效应及其抑制措施[J]. 强激光与粒子束, 2022, 34: 011005 doi: 10.11884/HPLPB202234.210336Lin Aoxiang, Peng Kun, Yu Juan, et al. Thermal effect and its suppression in high-power continuous-wave fiber laser system[J]. High Power Laser and Particle Beams, 2022, 34: 011005 doi: 10.11884/HPLPB202234.210336 [8] 段磊, 徐润亲, 宋云波, 等. 基于目标反射回光对高功率光纤激光器影响的理论模型和数值研究[J]. 物理学报, 2023, 72: 104203 doi: 10.7498/aps.72.20222464Duan Lei, Xu Runqin, Song Yunbo, et al. Theoretical model and numerical study of effect of target reflected light on high-power fiber laser[J]. Acta Physica Sinica, 2023, 72: 104203 doi: 10.7498/aps.72.20222464 [9] 周朴, 黄良金, 冷进勇, 等. 高功率双包层光纤激光器: 30周年的发展历程[J]. 中国科学: 技术科学, 2020, 50(2): 123-135Zhou Pu, Huang Liangjin, Leng Jinyong, et al. High-power double-cladding fiber lasers: a 30-year overview[J]. SCIENTIA SINICA Technologica, 2020, 50(2): 123-135 [10] Etzel H W, Gandy H W, Ginther R J. Stimulated emission of infrared radiation from ytterbium activated silicate glass[J]. Applied Optics, 1962, 1(4): 534-536. doi: 10.1364/AO.1.000534 [11] Pask H M, Archambault J L, Hanna D C, et al. Operation of cladding-pumped Yb3+-doped silica fibre lasers in 1 μm region[J]. Electronics Letters, 1994, 30(11): 863-865. [12] Jeong Y, Sahu J K, Williams R B, et al. Ytterbium-doped large-core fibre laser with 272 W output power[J]. Electronics Letters, 2003, 39(13): 977-978. doi: 10.1049/el:20030655 [13] Limpert J, Liem A, Zellmer H, et al. 500 W continuous-wave fibre laser with excellent beam quality[J]. Electronics Letters, 2003, 39(8): 645-647. doi: 10.1049/el:20030447 [14] Jeong Y, Sahu J K, Payne D N, et al. Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power[J]. Optics Express, 2004, 12(25): 6088-6092. doi: 10.1364/assp.2004.pdp13 [15] nLIGHT, Inc. nLIGHT announces release of LIEKKI™ application designer v4.0[EB/OL]. (2008-08-29)[2008-08-29]. https://www.nlight.net/press-releases-content/nlight-announces-release-of-liekki-application-designer-v40-z7st9?rq=LAD. [16] Hejaz K, Shayganmanesh M, Roohforouz A, et al. Decreasing effective reflectivity of the output coupler in the power scaling of fiber lasers[J]. Laser Physics Letters, 2016, 13: 035107. doi: 10.1088/1612-2011/13/3/035107 [17] Mircea H, Per S, William W, et al. Fiber laser simulators: challenges and opportunities[EB/OL]. [2007-06-05]. https://www.nlight.cn/nlight-files/file/articles/PS_05.2007_LAD_article_reprint_070605.pdf. [18] RP Photonics. Validating numerical simulation software[EB/OL]. (2008-11-08)[2008-11-08]. https://www.rp-photonics.com/spotlight_2008_11_08.html. [19] Beier F, Otto H J, Jauregui C, et al. 1009 nm continuous-wave ytterbium-doped fiber amplifier emitting 146 W[J]. Optics Letters, 2014, 39(13): 3725-3727. [20] 王小林, 吕品, 张汉伟, 等. 光纤激光仿真软件See Fiber Laser与光纤激光工具集SFTool[J]. 中国激光, 2017, 44: 0506002 doi: 10.3788/CJL201744.0506002Wang Xiaolin, Lü Pin, Zhang Hanwei, et al. Fiber laser simulation software see fiber laser and fiber laser tool collection SFTool[J]. Chinese Journal of Lasers, 2017, 44: 0506002 doi: 10.3788/CJL201744.0506002 [21] 段磊, 谭姝丹, 徐帆江. 光纤波导结构设计仿真软件SeeNano[J]. 中国激光, 2024, 51: 1901015 doi: 10.3788/CJL241085Duan Lei, Tan Shudan, Xu Fanjiang. Fiber waveguide structure design simulation software SeeNano[J]. Chinese Journal of Lasers, 2024, 51: 1901015 doi: 10.3788/CJL241085 [22] 陈颖. 偏振复用相干光OFDM系统信道估计技术的研究与仿真[D]. 北京: 北京邮电大学, 2011: 33-46Chen Ying. Channel estimation technology in PDM-CO-OFDM system[D]. Beijing: Beijing University of Posts and Telecommunications, 2011: 33-46 [23] Duan Lei, Xu Runqin, Tan Shudan, et al. A fast solution of the dynamic rate equation for a high-power fiber laser[J]. Photonics, 2024, 11: 881. doi: 10.3390/photonics11090881 [24] Jiang Min, Wu Hanshuo, An Yi, et al. Fiber laser development enabled by machine learning: review and prospect[J]. PhotoniX, 2022, 3: 16. doi: 10.1186/s43074-022-00055-3 [25] 张新长, 齐霁, 陶超, 等. 光学遥感影像去云研究进展、挑战与趋势[J]. 测绘学报, 2025, 54(4): 603-620Zhang Xinchang, Qi Ji, Tao Chao, et al. A survey on cloud removal in optical remote sensing images: progress, challenges, and future works[J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(4): 603-620 [26] 李鸿亮, 刘禹良, 廖文辉, 等. 大模型时代的光学文字识别: 现状及展望[J]. 中国图象图形学报, 2025, 30(6): 2023-2050Li Hongliang, Liu Yuliang, Liao Wenhui, et al. OCR in the era of large models: current status and prospects[J]. Journal of Image and Graphics, 2025, 30(6): 2023-2050 -
下载: