留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高功率光纤激光器仿真软件研究进展

段磊 唐秋艳 谭姝丹 李婧 王静 吴楚锋 唐熊忻 徐帆江

段磊, 唐秋艳, 谭姝丹, 等. 高功率光纤激光器仿真软件研究进展[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250314
引用本文: 段磊, 唐秋艳, 谭姝丹, 等. 高功率光纤激光器仿真软件研究进展[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250314
Duan Lei, Tang Qiuyan, Tan Shudan, et al. Research progress on high-power fiber laser simulation software[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250314
Citation: Duan Lei, Tang Qiuyan, Tan Shudan, et al. Research progress on high-power fiber laser simulation software[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250314

高功率光纤激光器仿真软件研究进展

doi: 10.11884/HPLPB202638.250314
基金项目: 中国科学院战略性先导科技专项(XDB0650000)
详细信息
    作者简介:

    段 磊,duanlei@iscas.ac.cn

    通讯作者:

    唐熊忻,xiongxin@iscas.ac.cn

    徐帆江,fangjiang@iscas.ac.cn

  • 中图分类号: TP319;TN248

Research progress on high-power fiber laser simulation software

  • 摘要: 高功率光纤激光仿真技术可在研发阶段有效降低实验成本、缩短开发周期,并优化激光器性能参数,对推动高功率光纤激光器在工业加工、国防、科研、医疗设备等领域的应用具有重要意义。重点介绍了国内外典型高功率光纤激光器仿真软件的研究进展,研究了其功能特点、和应用场景等有关情况,总结了高功率光纤激光建模仿真的研究特点,对高功率光纤激光建模仿真软件如何有效验证和可靠应用进行了思考,并对高功率光纤激光仿真软件下一步的发展方向进行展望,可为相关行业仿真软件研发提供借鉴。
  • 图  1  LAD软件界面

    Figure  1.  LAD software interface

    图  2  LAD仿真软件仿真结果

    Figure  2.  Simulation results of the LAD software

    图  3  RP Fiber Power软件界面

    Figure  3.  RP Fiber Power software interface

    图  4  RP Fiber Power仿真结果

    Figure  4.  Simulation results of RP Fiber Power software

    图  5  Fiberdesk软件界面

    Figure  5.  Fiberdesk software interface

    图  6  Fiberdesk软件仿真结果

    Figure  6.  Simulation results of the Fiberdesk software

    图  7  FLSS软件界面

    Figure  7.  FLSS software interface

    图  8  FLSS器件参数设置

    Figure  8.  Device parameter settings of the FLSS

    图  9  SFL软件界面

    Figure  9.  SFL software interface

    图  10  SFL软件部分仿真结果

    Figure  10.  Simulation results of the SFL software

    图  11  SeeNano软件仿真部分界面

    Figure  11.  Simulation results of SeeNano software

    表  1  光纤激光器仿真软件对比

    Table  1.   Comparison of software for fiber lasers

    comparison dimension LAD RP fiber power Fiberdesk FLSS SeeFiber
    developer corporate (US: Liekki, later acquired by nLIGHT) corporate (Germany: RP Photonics) corporate (Germany) research institution (CAEP, China) research institution
    (ISCAS/NUDT, China)
    release time/version released 2006, discontinued after
    V4.0 (2008).
    V1 released no later than 2008, updated to V8 in 2023. V1.0 in 2006, V7.0 in 2025. released 2012. No reported subsequent updates. released 2017, updated to
    V3.0 in 2024.
    pricing paid version paid version paid version no public release. free version & paid version.
    core technical principle rate equations rate equations, nonlinear Schrödinger equation (NLSE) nonlinear Schrödinger equation (NLSE) rate equations rate equations/coupled-mode equations, nonlinear Schrödinger equation (NLSE)
    functional
    focus
    high-power fiber laser/amplifier design & optimization full-scenario laser & photonics simulation (fiber lasers, resonators, pulses, etc.) linear/nonlinear pulse propagation in fibers high-power fiber laser simulation full-process simulation of continuous/pulsed fiber lasers and fiber photonic devices
    simulation capabilities supports CW lasers, MOPA systems covers CW, pulsed, mode-locked, Q-switched fiber laser design; Programming required for complex simulations simulates dispersion, SPM, Raman effect; focuses on pulse compression, supercontinuum adapts to high-power engineering needs; limited model coverage supports various laser structures, nonlinear effects, mode coupling, temperature field analysis
    operation mode graphical, no programming required built-in basic models, parametric configuration built-in basic models; parameterized configuration graphical & tabular interface; no programming required graphical & tabular interface; supports multi-parameter scanning
    output results ASE spectrum, nonlinear thresholds, fiber characteristics power evolution, spectral distribution, pulse chirp, resonator modes power evolution, pulse spatio-temporal spectrum, Raman response laser core performance parameters (detailed results not disclosed) multi-dimensional results including spectrum, power distribution, spot pattern, time domain, and temperature field
    advantages simple operation, user-friendly interface comprehensive functionality, adapts to diverse laser simulation scenarios high accuracy in pulse propagation; focuses
    on nonlinear fields
    aligns with laser fusion needs; early domestic breakthrough completely independent intellectual property rights, relatively complete models, and strong visualization
    of results
    limitations version discontinued, incompatible with Win7+; some models outdated less user-friendly interface; requires programming skills; difficult feature extension; some models lack richness. focuses on pulse domain; weak system-level simulation capability limited model coverage; no iteration; non-commercialized results low commercialization;
    immature user ecosystem
    下载: 导出CSV
  • [1] Zervas M N, Codemard C A. High power fiber lasers: a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 219-241. doi: 10.1109/JSTQE.2014.2321279
    [2] Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers[J]. Nature Photonics, 2013, 7(11): 861-867. doi: 10.1038/nphoton.2013.273
    [3] 王小林, 曾令筏, 叶云, 等. LD泵浦新型高功率掺镱光纤激光器研究(特邀)[J]. 中国激光, 2024, 51: 1901013 doi: 10.3788/CJL240948

    Wang Xiaolin, Zeng Lingfa, Ye Yun, et al. Directly LD pumped novel high power ytterbium-doped fiber laser (invited)[J]. Chinese Journal of Lasers, 2024, 51: 1901013 doi: 10.3788/CJL240948
    [4] 肖虎, 李瑞显, 吴函烁, 等. 高功率高光束质量级联泵浦掺镱光纤激光器研究进展[J]. 光学学报, 2023, 43: 1714009 doi: 10.3788/AOS230991

    Xiao Hu, Li Ruixian, Wu Hanshuo, et al. Research progress in tandem-pumped high-power and high-beam quality ytterbium-doped fiber laser[J]. Acta Optica Sinica, 2023, 43: 1714009 doi: 10.3788/AOS230991
    [5] 周朴, 冷进勇, 肖虎, 等. 高平均功率光纤激光的研究进展与发展趋势[J]. 中国激光, 2021, 48: 2000001 doi: 10.3788/CJL202148.2000001

    Zhou Pu, Leng Jinyong, Xiao Hu, et al. High average power fiber lasers: research progress and future prospect[J]. Chinese Journal of Lasers, 2021, 48: 2000001 doi: 10.3788/CJL202148.2000001
    [6] 周朴, 粟荣涛, 李灿, 等. 高功率光纤激光的光束合成: 进展、动向与展望(特邀)[J]. 中国激光, 2024, 51: 1901003 doi: 10.3788/CJL241121

    Zhou Pu, Su Rongtao, Li Can, et al. Beam combining of high power fiber lasers: progress, trend and prospects (invited)[J]. Chinese Journal of Lasers, 2024, 51: 1901003 doi: 10.3788/CJL241121
    [7] 林傲祥, 彭昆, 俞娟, 等. 高功率连续光纤激光系统热效应及其抑制措施[J]. 强激光与粒子束, 2022, 34: 011005 doi: 10.11884/HPLPB202234.210336

    Lin Aoxiang, Peng Kun, Yu Juan, et al. Thermal effect and its suppression in high-power continuous-wave fiber laser system[J]. High Power Laser and Particle Beams, 2022, 34: 011005 doi: 10.11884/HPLPB202234.210336
    [8] 段磊, 徐润亲, 宋云波, 等. 基于目标反射回光对高功率光纤激光器影响的理论模型和数值研究[J]. 物理学报, 2023, 72: 104203 doi: 10.7498/aps.72.20222464

    Duan Lei, Xu Runqin, Song Yunbo, et al. Theoretical model and numerical study of effect of target reflected light on high-power fiber laser[J]. Acta Physica Sinica, 2023, 72: 104203 doi: 10.7498/aps.72.20222464
    [9] 周朴, 黄良金, 冷进勇, 等. 高功率双包层光纤激光器: 30周年的发展历程[J]. 中国科学: 技术科学, 2020, 50(2): 123-135

    Zhou Pu, Huang Liangjin, Leng Jinyong, et al. High-power double-cladding fiber lasers: a 30-year overview[J]. SCIENTIA SINICA Technologica, 2020, 50(2): 123-135
    [10] Etzel H W, Gandy H W, Ginther R J. Stimulated emission of infrared radiation from ytterbium activated silicate glass[J]. Applied Optics, 1962, 1(4): 534-536. doi: 10.1364/AO.1.000534
    [11] Pask H M, Archambault J L, Hanna D C, et al. Operation of cladding-pumped Yb3+-doped silica fibre lasers in 1 μm region[J]. Electronics Letters, 1994, 30(11): 863-865.
    [12] Jeong Y, Sahu J K, Williams R B, et al. Ytterbium-doped large-core fibre laser with 272 W output power[J]. Electronics Letters, 2003, 39(13): 977-978. doi: 10.1049/el:20030655
    [13] Limpert J, Liem A, Zellmer H, et al. 500 W continuous-wave fibre laser with excellent beam quality[J]. Electronics Letters, 2003, 39(8): 645-647. doi: 10.1049/el:20030447
    [14] Jeong Y, Sahu J K, Payne D N, et al. Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power[J]. Optics Express, 2004, 12(25): 6088-6092. doi: 10.1364/assp.2004.pdp13
    [15] nLIGHT, Inc. nLIGHT announces release of LIEKKI™ application designer v4.0[EB/OL]. (2008-08-29)[2008-08-29]. https://www.nlight.net/press-releases-content/nlight-announces-release-of-liekki-application-designer-v40-z7st9?rq=LAD.
    [16] Hejaz K, Shayganmanesh M, Roohforouz A, et al. Decreasing effective reflectivity of the output coupler in the power scaling of fiber lasers[J]. Laser Physics Letters, 2016, 13: 035107. doi: 10.1088/1612-2011/13/3/035107
    [17] Mircea H, Per S, William W, et al. Fiber laser simulators: challenges and opportunities[EB/OL]. [2007-06-05]. https://www.nlight.cn/nlight-files/file/articles/PS_05.2007_LAD_article_reprint_070605.pdf.
    [18] RP Photonics. Validating numerical simulation software[EB/OL]. (2008-11-08)[2008-11-08]. https://www.rp-photonics.com/spotlight_2008_11_08.html.
    [19] Beier F, Otto H J, Jauregui C, et al. 1009 nm continuous-wave ytterbium-doped fiber amplifier emitting 146 W[J]. Optics Letters, 2014, 39(13): 3725-3727.
    [20] 王小林, 吕品, 张汉伟, 等. 光纤激光仿真软件See Fiber Laser与光纤激光工具集SFTool[J]. 中国激光, 2017, 44: 0506002 doi: 10.3788/CJL201744.0506002

    Wang Xiaolin, Lü Pin, Zhang Hanwei, et al. Fiber laser simulation software see fiber laser and fiber laser tool collection SFTool[J]. Chinese Journal of Lasers, 2017, 44: 0506002 doi: 10.3788/CJL201744.0506002
    [21] 段磊, 谭姝丹, 徐帆江. 光纤波导结构设计仿真软件SeeNano[J]. 中国激光, 2024, 51: 1901015 doi: 10.3788/CJL241085

    Duan Lei, Tan Shudan, Xu Fanjiang. Fiber waveguide structure design simulation software SeeNano[J]. Chinese Journal of Lasers, 2024, 51: 1901015 doi: 10.3788/CJL241085
    [22] 陈颖. 偏振复用相干光OFDM系统信道估计技术的研究与仿真[D]. 北京: 北京邮电大学, 2011: 33-46

    Chen Ying. Channel estimation technology in PDM-CO-OFDM system[D]. Beijing: Beijing University of Posts and Telecommunications, 2011: 33-46
    [23] Duan Lei, Xu Runqin, Tan Shudan, et al. A fast solution of the dynamic rate equation for a high-power fiber laser[J]. Photonics, 2024, 11: 881. doi: 10.3390/photonics11090881
    [24] Jiang Min, Wu Hanshuo, An Yi, et al. Fiber laser development enabled by machine learning: review and prospect[J]. PhotoniX, 2022, 3: 16. doi: 10.1186/s43074-022-00055-3
    [25] 张新长, 齐霁, 陶超, 等. 光学遥感影像去云研究进展、挑战与趋势[J]. 测绘学报, 2025, 54(4): 603-620

    Zhang Xinchang, Qi Ji, Tao Chao, et al. A survey on cloud removal in optical remote sensing images: progress, challenges, and future works[J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(4): 603-620
    [26] 李鸿亮, 刘禹良, 廖文辉, 等. 大模型时代的光学文字识别: 现状及展望[J]. 中国图象图形学报, 2025, 30(6): 2023-2050

    Li Hongliang, Liu Yuliang, Liao Wenhui, et al. OCR in the era of large models: current status and prospects[J]. Journal of Image and Graphics, 2025, 30(6): 2023-2050
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  14
  • HTML全文浏览量:  8
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-26
  • 修回日期:  2026-01-13
  • 录用日期:  2026-01-05
  • 网络出版日期:  2026-01-28

目录

    /

    返回文章
    返回