留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于PCB无磁芯变压器的紧凑型隔离驱动

冯灵霄 李国超 张荣荣 周宇亮 袁豪阳 邱剑 赵晖 刘克富 李柳霞

冯灵霄, 李国超, 张荣荣, 等. 基于PCB无磁芯变压器的紧凑型隔离驱动[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250342
引用本文: 冯灵霄, 李国超, 张荣荣, 等. 基于PCB无磁芯变压器的紧凑型隔离驱动[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250342
Feng Lingxiao, Li Guochao, Zhang Rongrong, et al. Compact isolation driver design based on PCB coreless transformer[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250342
Citation: Feng Lingxiao, Li Guochao, Zhang Rongrong, et al. Compact isolation driver design based on PCB coreless transformer[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250342

基于PCB无磁芯变压器的紧凑型隔离驱动

doi: 10.11884/HPLPB202638.250342
基金项目: 强电磁技术全国重点实验室开放课题项目(AET 2024KF008)
详细信息
    作者简介:

    冯灵霄,24210720180@fudan..edu.cn

    通讯作者:

    邱 剑,jqiu@fudan.edu.cn

  • 中图分类号: TM832

Compact isolation driver design based on PCB coreless transformer

  • 摘要: 针对全固态 Marx 脉冲发生器电路中隔离驱动部分体积较大、成本高及集成性差等问题,提出了一种基于PCB无磁芯变压器的同步隔离驱动方案,并研制样机验证了驱动可行性。首先对无磁芯变压器进行建模,并借助Q3D电磁仿真软件提取关键电磁参数,结合实测数据进行对比,验证了模型准确性。通过对电路运行过程的理论分析与 LTspice 仿真,阐明了该方案在驱动时序和工作机理方面与传统磁芯变压器驱动存在的显著差异。最后搭建实验平台对所提出的驱动系统进行测试,结果表明该方案具备宽动态范围驱动能力、优异的电气隔离性能和良好的 PCB 工艺兼容性,验证了其可行性与工程应用潜力。
  • 图  1  无磁芯变压器的结构示意图与等效电路图

    Figure  1.  Structural and equivalent circuit diagrams of the coreless transformer

    图  2  传统磁芯变压器驱动结构及其驱动时序图

    Figure  2.  Structure and driving timing of the traditional magnetic-core transformer driver

    图  3  三层驱动模块结构及其堆叠侧视图

    Figure  3.  Structure and side view of the three-layer driver module

    图  4  驱动系统电路拓扑

    Figure  4.  Drive system circuit topology

    图  5  电路不同工作阶段示意图

    Figure  5.  Illustration of different working phases of the circuit

    图  6  仿真原理图

    Figure  6.  Schematic diagram of the simulation circuit

    图  7  传统驱动与提出驱动方式的触发与驱动时序对比

    Figure  7.  Timing comparison of trigger and drive signals between traditional and proposed driving schemes

    图  8  无磁芯变压器驱动器的驱动时序图

    Figure  8.  Driving timing diagram of the coreless transformer-based gate driver

    图  9  实验平台图

    Figure  9.  Experimental setup

    图  10  驱动器输出波形的幅值与脉宽可调特性

    Figure  10.  Output drive waveforms of the proposed driver with adjustable amplitude and pulse width

    图  11  驱动波形上升沿细节图

    Figure  11.  Zoomed-in view of the rising edge of the drive waveform

    图  12  不同频率下驱动波形图

    Figure  12.  Drive waveforms at different frequencies

    表  1  仿真与实测结果对比

    Table  1.   Comparison of simulation and measurement results

    d/mm L1/μH L2/μH LM/μH k
    Q3D 0.6 2.02 2.02 1.65 0.82
    0.8 2.00 2.00 1.53 0.77
    1.0 2.02 1.99 1.43 0.71
    1.2 2.00 2.00 1.33 0.67
    1.6 2.00 2.04 1.18 0.58
    BODE 100 0.6 1.99 2.02 1.65 0.82
    0.8 1.97 2.02 1.58 0.79
    1.0 2.02 2.05 1.43 0.70
    1.2 1.99 2.01 1.34 0.67
    1.6 2.02 2.04 1.17 0.58
    下载: 导出CSV

    表  2  理论计算结果

    Table  2.   Results of theoretical calculations

    d/mm LM/μH k
    0.6 1.617678 0.8007
    0.8 1.507428 0.7461
    1.0 1.406459 0.6961
    1.2 1.313719 0.6502
    1.6 1.149608 0.5690
    下载: 导出CSV
  • [1] Li Zi, Liu Haotian, Rao Junfeng, et al. Gate driving circuit for the all solid-state rectangular Marx generator[J]. IEEE Transactions on Plasma Science, 2019, 47(8): 4058-4063. doi: 10.1109/TPS.2019.2923327
    [2] Jiang Song, Shi Haozhi, Wang Zexuan, et al. A bipolar modular multilevel generator based on half-bridge and special full-bridge for electroporation applications[J]. IEEE Transactions on Plasma Science, 2021, 49(6): 1920-1927. doi: 10.1109/TPS.2021.3080327
    [3] Zhong Zhengyi, Rao Junfeng, Liu Haotian, et al. Review on solid-state-based Marx generators[J]. IEEE Transactions on Plasma Science, 2021, 49(11): 3625-3643. doi: 10.1109/TPS.2021.3121683
    [4] Bouabana A, Sourkounis C. Design and analysis of a coreless flyback converter with a planar printed-circuit-board transformer[C]//12th International Conference on Optimization of Electrical and Electronic Equipment. 2010: 557-563.
    [5] Sabate J, Delgado E, Harfman-Todorovic M. Gate driver power supply for medium voltage SiC Mosfets with air core transformer[C]//2022 IEEE Energy Conversion Congress and Exposition (ECCE). 2022: 1-6.
    [6] Spro O C, Mauseth F, Peftitsis D. High-voltage insulation design of coreless, planar PCB transformers for multi-MHz power supplies[J]. IEEE Transactions on Power Electronics, 2021, 36(8): 8658-8671. doi: 10.1109/TPEL.2021.3049353
    [7] Hu Guangliang, Yu Yong, Sun Tianlin, et al. An integrated magnetically isolated gate driver architecture for SiC MOSFET applications[C]//2024 IEEE 7th International Electrical and Energy Conference (CIEEC). 2024: 2411-2416.
    [8] Serban E, Saket M A, Ordonez M. High-performance isolated gate-driver power supply with integrated planar transformer[J]. IEEE Transactions on Power Electronics, 2021, 36(10): 11409-11420. doi: 10.1109/TPEL.2021.3070053
    [9] Guo Zhehui, Li Hui. A 20MHz-transformer-based isolated gate driver for 3.3kV SiC MOSFETs[C]//IEEE Applied Power Electronics Conference and Exposition. 2021: 2480-2484.
    [10] Guo Zhehui, Li Hui. A MHz-pulse-transformer isolated gate driver with signal-power integrated transmission for medium-voltage SiC MOSFETs[J]. IEEE Transactions on Power Electronics, 2022, 37(8): 9415-9427. doi: 10.1109/TPEL.2022.3158145
    [11] Phukan R, Wei Lixiang, Hu Jiangang. A low profile gate drive power supply[C]//2019 IEEE Applied Power Electronics Conference and Exposition (APEC). 2019: 3394-3399.
    [12] Guo Zhehui, Li Hui, Cheetham P. A very-high-frequency isolated gate driver power supply using solid dielectrics for medium voltage SiC MOSFETs[C]//2022 IEEE Applied Power Electronics Conference and Exposition (APEC). 2022: 1394-1399.
    [13] Tang Saichun, Hui S Y, Chung H S H. Characterization of coreless printed circuit board (PCB) transformers[J]. IEEE Transactions on Power Electronics, 2000, 15(6): 1275-1282. doi: 10.1109/63.892842
    [14] Ulrich R K, Brown W D. Advanced electronic packaging[M]. 2nd ed. Hoboken, NJ: Wiley-Interscience/IEEE, 2006.
    [15] Sun Keyao, Wang Jun, Burgos R, et al. Design and multiobjective optimization of an auxiliary wireless power transfer converter in medium-voltage modular conversion systems[J]. IEEE Transactions on Power Electronics, 2022, 37(8): 9944-9958. doi: 10.1109/TPEL.2022.3153971
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  14
  • HTML全文浏览量:  5
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-10-13
  • 修回日期:  2026-01-08
  • 录用日期:  2025-12-24
  • 网络出版日期:  2026-02-13

目录

    /

    返回文章
    返回