留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于裂变响应函数的AP1000中子学计算

龙鑫翔 李泓龙 张云昕 何东豪 彭良辉 刘晓晶

龙鑫翔, 李泓龙, 张云昕, 等. 基于裂变响应函数的AP1000中子学计算[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250378
引用本文: 龙鑫翔, 李泓龙, 张云昕, 等. 基于裂变响应函数的AP1000中子学计算[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250378
Long Xinxiang, Li Honglong, Zhang Yunxin, et al. Neutronics calculation for AP1000 based on the fission response function[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250378
Citation: Long Xinxiang, Li Honglong, Zhang Yunxin, et al. Neutronics calculation for AP1000 based on the fission response function[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250378

基于裂变响应函数的AP1000中子学计算

doi: 10.11884/HPLPB202638.250378
基金项目: 国家自然科学基金项目(12475179);中核集团‘青年英才’科研项目;上海交通大学‘AI for Engineering赋能计划’
详细信息
    作者简介:

    龙鑫翔,long_xinxiang@163.com

    通讯作者:

    何东豪,donghaohe@sjtu.edu.cn

  • 中图分类号: TL324

Neutronics calculation for AP1000 based on the fission response function

  • 摘要: 使用基于裂变响应函数算法的FLASH程序,在具有复杂堆芯结构的AP1000反应堆内进行计算验证。通过基于Serpent蒙特卡罗程序的参考工况计算构建裂变响应函数数据库,结合局部组件间环境效应修正因子算法,有效消除了组件状态差异对计算精度的影响。同时,采用预估-校正法对反射层进行了精确模拟。自主开发的FLASH程序在AP1000 堆芯热态零功率工况下进行了数值验证,结果表明:与蒙特卡罗参考解相比,各2D轴向切片的有效增值系数偏差均控制在+220 pcm以内,全堆三维有效增值系数偏差为+209 pcm;2D棒功率分布的均方根误差低于1.1%,三维棒功率均方根误差为1.05%,组件功率均方根误差为0.67%。在20核并行条件下,FLASH程序实现了AP1000全堆三维计算,耗时仅为73秒,验证了所提方法的高效性与高精度。
  • 图  1  AP1000反应堆堆芯径向排布图[10]

    Figure  1.  AP1000 reactor core radial arrangement

    图  2  AP1000反应堆堆芯组件轴向排布图

    Figure  2.  AP1000 reactor core assemblies axial arrangement

    图  3  区域4组件数据库计算模型

    Figure  3.  Region 4 assemblies database calculation model

    图  4  堆芯3*3燃料组件区域示例图

    Figure  4.  Core 3×3 fuel assembly area example

    图  5  无限模型中Z1与Z2位置等价性的图解

    Figure  5.  Positional equivalence between Z1 and Z2 in infinite model

    图  6  slice 4对应的反射层环境因子

    Figure  6.  Reflector environment factor corresponding to slice 4

    图  7  堆芯输运计算流程图

    Figure  7.  Core transport calculation process

    图  8  AP1000-2D slice4棒束功率误差分布图

    Figure  8.  AP1000 2D-slice4 pin-wise power distribution

    图  9  AP1000-2D slice4组件功率误差分布图

    Figure  9.  AP1000 2D-slice4 case-wise power distribution

    图  10  AP1000-3D棒束功率误差分布图

    Figure  10.  AP1000 3D pin-wise power distribution

    图  11  AP1000-3D组件功率误差分布图

    Figure  11.  AP1000 3D case-wise power distribution

    表  1  堆芯组件7种区域布置细节表

    Table  1.   Core assembly arrangement details for seven regions

    region group fraction of total U235 Midzone U235 Blanket IFBA Rods WABA Rods
    1 0.10 0.740 Absent 0 0
    2 0.31 1.580 Absent 0 0
    3 0.18 3.200 1.580 0 0
    4 0.23 3.776 3.200 68 8L+4S
    5A 0.05 4.376 3.200 88 4I
    5B 0.03 4.376 3.200 124 0
    5C 0.10 4.376 3.200 124 8I
    下载: 导出CSV

    表  2  slice1-7两种功率相对误差情况汇总表

    Table  2.   Summary table of relative power errors for slice 1-7

    slice FLASH keff reference keff pin-wise power RMSE/% case-wise power RMSE/%
    1 1.06395 1.06263 0.72 0.42
    2 1.01983 1.01761 0.92 0.42
    3 1.01062 1.00863 0.98 0.54
    4 1.00139 0.99950 1.03 0.51
    5 1.01064 1.00858 1.00 0.58
    6 1.01968 1.01751 1.05 0.65
    7 1.06210 1.06195 0.78 0.53
    下载: 导出CSV

    表  3  FLASH计算AP1000-3D所需时间

    Table  3.   FLASH calculation time for AP1000-3D

    task number of core duration/s
    read FRF database 1 21
    2D calculations for 7 slices 20 22
    collapse calculation for 7 slices 20 16
    3D full-core collapse matrix calculation 20 3
    power reconstruction + output distribution 1 11
    total duration 73
    下载: 导出CSV
  • [1] Walters W J, Roskoff N J, Haghighat A. The RAPID fission matrix approach to reactor core criticality calculations[J]. Nuclear Science and Engineering, 2018, 192(1): 21-39. doi: 10.1080/00295639.2018.1497395
    [2] He Donghao, Walters W J. A new fission matrix correction method to estimate the source distribution in nuclear reactor core[C]//2018 International Conference on Physics of Reactors: Reactor Physics Paving the Way Towards More Efficient Systems. 2018: 2042-2053.
    [3] He Donghao, Walters W J. A local fission matrix correction method for heterogeneous whole core transport with RAPID[J]. Annals of Nuclear Energy, 2019, 134: 263-272. doi: 10.1016/j.anucene.2019.06.008
    [4] Al Hajj W, Haghighat A. A novel fission-matrix based radial boundary correction methodology and its implementation into the RAPID code system[J]. EPJ Web of Conferences, 2024, 302: 13010. doi: 10.1051/epjconf/202430213010
    [5] He Donghao, Zhang Tengfei, Liu Xiaojing. The application of the combined fission matrix theory in fast reactors[J]. Frontiers in Energy Research, 2021, 9: 766449. doi: 10.3389/fenrg.2021.766449
    [6] Leppänen J. Development of a new Monte Carlo reactor physics code[M]. Finland: VTT Technical Research Centre of Finland, 2007.
    [7] Leppänen J, Pusa M, Viitanen T, et al. The serpent Monte Carlo code: status, development and applications in 2013[J]. Annals of Nuclear Energy, 2015, 82: 142-150. doi: 10.1016/j.anucene.2014.08.024
    [8] Westinghouse Nuclear Power Electric Plants Company. AP1000 document cover sheet[R]. Pittsburgh: Westinghouse Nuclear Power Electric Plants Company, 2007.
    [9] Darnowski P, Ignaczak P, Orębski P, et al. Simulations of the AP1000-based reactor core with SERPENT computer code[J]. Archive of Mechanical Engineering, 2018, 65(3): 295-325.
    [10] Franceschini F, Godfrey A, Kulesza J, et al. Zero power physics test simulations for the AP1000® PWR[R]. CASL-U-2014-0012-001, 2014.
    [11] Roche P. The AP1000 nuclear reactor design[R]. 2016.
    [12] 王一, 王瑞宏. 网格划分对裂变矩阵加速的影响[J]. 强激光与粒子束, 2017, 29: 126018 doi: 10.11884/HPLPB201729.170234

    Wang Yi, Wang Ruihong. Effect of mesh division on the fission matrix acceleration method[J]. High Power Laser and Particle Beams, 2017, 29: 126018 doi: 10.11884/HPLPB201729.170234
    [13] Duderstadt J J, Hamilton L J. Nuclear reactor analysis[M]. New York: Wiley, 1976.
    [14] Vázquez-Rodríguez R, Espinosa-Paredes G, Morales-Sandoval J B, et al. Averaging the neutron diffusion equation[J]. Progress in Nuclear Energy, 2009, 51(3): 474-484. doi: 10.1016/j.pnucene.2008.10.007
    [15] Hua Guowei, Li Yunzhao, Wang Sicheng. PWR pin-homogenized cross-sections analysis using big-data technology[J]. Progress in Nuclear Energy, 2020, 121: 103228. doi: 10.1016/j.pnucene.2019.103228
    [16] Martínez L A, Hernández C R G, García J R, et al. Thermo-hydraulic simulation of AP1000 nuclear reactor fuel assembly[J]. VETOR-Revista de Ciências Exatas e Engenharias, 2021, 31(1): 60-71. doi: 10.14295/vetor.v31i1.13576
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  10
  • HTML全文浏览量:  4
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-10-31
  • 修回日期:  2025-12-27
  • 录用日期:  2026-01-09
  • 网络出版日期:  2026-02-13

目录

    /

    返回文章
    返回